

Web Service Execution Streamlining

Costas Vassilakis1, George Lepouras2, Akrivi Katifori3
1 Department of Computer Science and Technology, University of Peloponnese, Terma Karaiskaki 22100,

Greece (costas@uop.gr)
2 Department of Computer Science and Technology, University of Peloponnese, (gl@uop.gr)

3 Department of Informatics and Telecommunications, University of Athens (vivi@di.uoa.gr)

ABSTRACT

Web services are functional, independent components that can be called over the web to perform a task. Besides being
used individually to deliver some well-specified functionality, web services may be used as building blocks that can be
combined to implement a more complex function. In such compositions, typically some web services produce results
that are used as input for web services that will be subsequently invoked. In the execution schemes currently employed,
web services producing intermediate results deliver them to some “coordinating entity”, which arranges the forwarding
of these intermediate results to web services that require them as input. In this paper we present an execution scheme
that employs direct communication between producers and consumers of intermediate results. Besides performance
improvement stemming from reduction of network communication, this scheme permits consumer web services to
employ simpler authenticity and integrity verification algorithms on incoming parameters, when the producer web
service is considered trustworthy.

Keywords: Web service synthesis, web service execution; optimization, streamlining

1. INTRODUCTION

According to the service oriented architecture paradigm,
web services are offered by specific protocols and
communicate over the internet, providing a distributed
computing infrastructure for both intra- and
cross-enterprise application integration and
collaboration [1]. Offering organizations advertise their
services by enrolling them into publicly accessible
registries, typically following the UDDI standard [2].
Clients locate the services of interest through these
registries and invoke them, providing input parameters
and obtaining the desired results.

In many cases, for the completion of a business
transaction or for fully servicing a citizen’s life event [3]
a number of web services need to be combined in a
fashion which demands results returned by a web
service to be fed as input parameters to another. For
example, in order to apply for a passport, the citizen
must present a birth certificate; thus –at the information
system level– the web service producing the birth
certificate should be first executed and its output (the
birth certificate) will be provided as an input parameter
to the web service that records passport issuance
applications.

Handling of such data flows between web services may
be left to the client (Figure 1), who should invoke the
first web service, collect the result and include it in the
invocation of the second web service. In more complex
cases, the client may need to coordinate an arbitrary
number of web services, arranging for intermediate
results to be forwarded to the appropriate consumer (e.g.

a result returned from WS#1 may need to be forwarded
to WS#3 and WS#4).

Figure 1. Client-Managed Service Composition

An alternative to client-managed data flow is the
introduction of a service aggregator entity [4]. The
service aggregator again publishes web services which
are invoked by clients, but this time each such service
corresponds to a “business transaction”, not an
individual operation. The service aggregator undertakes
the tasks of (a) identification of the distinct services that
must be invoked (in a static [5], dynamic [6], or
semantics-based [7] fashion) and (b) their orchestration
(arrangement of control flow and data flow between
constituent services) [7], [8]. The service aggregator
approach for the case of a citizen accessing a passport
issuance service is illustrated in Figure 2.

While the web service aggregator approach reduces
significantly the user’s burden and the complexity in the
client (through removing the need for web service
identification, orchestration, and execution), the data
flow between the individual web services still remains
sub-optimal. More specifically, in both cases some

mailto:costas@uop.gr
mailto:gl@uop.gr
mailto:vivi@di.uoa.gr

intermediate results (the birth certificate in the
illustrated examples) are sent from the producing web
service to the coordinating entity (the client or the web
service aggregator), only to be subsequently forwarded
to the consuming web services. If such results were
directly forwarded from the producing to the consuming
web service, an extra transmission would be avoided,
improving thus performance.

Figure 2. Web Service Aggregator Approach

An additional benefit from the direct communication is
related to security and trust: consider the case that a
consuming web service needs to verify the authenticity
and integrity of an incoming parameter, such as the birth
certificate. If the parameter were directly supplied by
the producing web service and the organization offering
the consuming service trusts the one offering the
producing web service, then it suffices to verify the
producer’s authenticity, e.g. by verifying the source IP
address. If, however, the parameter were supplied by the
coordinating client or an aggregator entity, then such a
check does not suffice, and document authenticity and
integrity should be verified through more complex and
computationally expensive methods, such as digital
signatures and public key infrastructure [9]. Naturally,
the provision of support for direct communication
between producing and consuming web services should
complement the normal invocation mode and not
substitute it, since compatibility with clients not
supporting the optimized scheme or simply wishing to
retrieve the result should be retained.

The rest of the paper is organized as follows: section 2
presents related work on the areas of web service
composition, orchestration and execution. Section 3
presents the proposed solution, illustrating the
architectural elements and their interaction during the
streamlined execution. Finally, section 4 concludes the
paper and outlines future research directions.

2. RELATED WORK

For determining the web services that need to be
invoked in the context of a business transaction or while
servicing a life-event, three predominant approaches
exist insofar. The eGov project [10] allows the
composite service developer to draw simple web
services from a pool of existing ones and define their
execution flow and the data flow between services,
creating thus a composite task; composite tasks can be

themselves reused as building blocks for building other
composite services. Technological frameworks, such as
the web services composite application framework
(WS-CAF [5]) also undertake such approaches. [6]
proposes a less rigid approach, where the developers
specify a schema for various aspects of the composite
service, including structure of the flow, service
definition, nodes for decision taking and event handling,
processing of data and regions with transactional
“all-or-nothing” semantics. The original schema may be
altered at execution time, to tackle cases where
constituent elements of the composite service have been
modified since the definition of the composite service.
In [7], a semantics-based service composition
mechanism is presented, in which users of
e-government services request the desired output (e.g.
certificates, documents etc) and an ontology is
employed to identify the web services that need to be
executed to produce the requested result. The ontology
includes full description of the input requirements and
output types of each available web service, thus the
execution order of the selected web can be derived on
the basis of data flow requirements. A Web Services
Composition Approach based on Software Agents and
Context is finally described in [11].

Typically, web service composition methods focus on
the creation of the service execution plan, and leave the
actual execution to be performed by separate tools. For
example, [5] employs the IONA Service Bus [12] for
execution) while another approach would be to format
the service execution plan according to the rules of a
standard web service orchestration language, such as
BPEL4WS ([13] or WSFL [14]) and delegate the
execution responsibility to a web service orchestration
engine [8]. A notable exception is [7], which includes a
web service execution module, needed in this case to
cater for selection between different concrete
implementations (mainly for optimization purposes) and
accommodation of the event-condition-action rules that
are supported by the platform. The OntoGov project
also includes an orchestration component, which again
selects between different concrete implementations,
taking into account jurisdiction issues in the context of
e-government [15]. None of the orchestration engines
made available by the industry or proposed by
researchers addresses the issue of data streamlining
between constituent web services of a composite
service.

3. STREAMLINED WEB SERVICE EXECUTION

In order to accommodate streamlining of results, while
maintaining the ability to invoke web services in the
“traditional” fashion, an extra module is introduced in
the service-oriented architecture, namely the web
service streamliner. A separate instance of the web
service streamliner should be installed by any
organization wishing to include the extra functionality
for the web services it offers, as illustrated in Figure 4.

W
eb

 S
er

vi
ce

A
gg

re
ga

to
r

WS identification WS orchestration

Web service
streamliner

Intermediate
result

Intermediate
result

Final
result part #1

Final result
part #m

Web service
streamliner

Web service
streamliner

Organization #1 Organization #2 Organization #n
WS #1 WS #2 WS #n

Client
Composite

service result

Composite
service invocation

“Normal”
WS invocation

“Normal”
WS invocation

“Normal”
WS invocation

WS #1 execution
request

WS #n execu-
tion request

WS #2 execu-
tion request

...

Figure 3. Web service streamlining

According to this enhanced architecture, the web service
aggregator initially formulates the composite service
execution plan, which involves the execution of web
services WS1, WS2, …, WSn, running at the premises of
organizations O1, O2, …, On, respectively. Subsequently,
for each web service that needs to be invoked, the web
service aggregator sends a WS execution request to web
service streamliner running at the corresponding
installation. The web service streamliner undertakes the
task of collecting parameter values that are yet
unavailable (will be produced by other web services
within the execution plan), invoking the local web
service and forwarding its results to their intended
consumers. Finally, the web service aggregator will
collect the parts of the final result, assemble them into a
reply message, and send it to the client that initiated the
request. Note that clients and streamlining-unaware web
service aggregators can still invoke individual web
services according to the “traditional” paradigm,
providing all input parameters and collecting the results,
as illustrated in figures 1 and 2.

In the following paragraphs, the web service
streamlining operation is described in more detail.
Firstly, the web service execution request messages,
sent by the web service aggregator to web service
streamliners contain the following specifications:

1. the (local to the installation) web service to be

executed.

2. for each input parameter (a part in the WSDL input

message [2]), either a concrete value (which can be
directly used) or a specification of the value provider,
i.e. a particular web service execution that will
provide the concrete value.

3. for each output parameter (a part in the WSDL

output message [2]), a list of value recipients that
this output parameter should be forwarded to. A
value recipient is either a particular web service
execution (being run in the context of the same
composite web service) or the web service
aggregator; the latter collects result parts that are

part of the final reply, packs them into a web service
response and sends it to the client that initiated the
composite service execution. This scheme hides all
streamlining complexities from the client, which
interacts with the system using a single standard web
service invocation.

The aggregator may transmit all requests as soon as the
execution plan has been formulated, regardless of the
data dependencies between constituent web services; the
web service streamliners undertake the responsibility of
deferring the execution of web services for which some
input parameters are yet unavailable, as described in the
following paragraphs.

When a web service streamliner receives such a request,
it first checks if all input parameters for invoking the
web service are available (i.e. specified as concrete
values); in such a case, it proceeds with the execution of
the specified web service (acting thus as a “normal”
web service client) and collects its result. Subsequently,
the result is analyzed into its constituent parts, and each
part is forwarded to the appropriate recipients, as
specified in the request message.

If, however, not all input parameters are available (i.e.
for at least one parameter the message contains a
producer specification rather than a concrete value), the
web service streamliner stores the request into a pending
request queue. The request will remain in the queue
until the values for all input parameters have been
collected from the designated producers, at which time
the request is extracted from the queue and executed, as
described above.

Note that there exists a possibility that some output
parameter produced by a web service arrives at a web
service streamliner before the request that will consume
this parameter has been received. For instance, if the
network link between the web service aggregator and
organization #2 of Figure 3 is too slow or down, it is
possible that request #1 is sent to organization #1 and
processed, and its result is forwarded to organization #2
(through an alternative network link) before request #2
has arrived to the streamliner at organization #2. In such
cases, the receiving streamliner stores the incoming
value in an unclaimed parameter repository; each
incoming request is always matched against the
repository contents, and if any of the parameters therein
were destined for the specific request, it is extracted and
bound to the request. Entries in the unclaimed parameter
repository may be evicted after a certain period of time,
defined by the local administrator, to cater for cases that
the composite service execution in the context of which
the parameter has been produced has been cancelled,
thus the parameter is no longer useful.

An issue that needs to be carefully addressed in this
scheme is to enable web service streamliners to
correctly correlate results of producing web services

with input parameters of consuming web services.
Consider for example the case that, two citizens invoke
“at the same time” the composite service depicted in
Figure 4, with each citizen providing her own values for
the SSN, name and Address parameters and expecting to
receive her personal passport document. The pending
request queue at organization #2 will contain two entries
for execution of the passport issuance service, and the
streamliner at organization #2 will receive two messages
from the streamliner at organization #1 containing the
respective parameter values; then the receiving
streamliner should associate each incoming parameter
value with the proper entry in the pending request queue.
Similarly, the web service aggregator should be able to
correlate each result returned by any streamliner with
the corresponding composite service invocation, in
order to return the result to the proper citizen.

Figure 4. An Example Streamlined Composition

To enable web service streamliners to perform this
correlation the following scheme has been adopted: for
each distinct web service execution request, the web
service aggregator generates a request identifier that is
unique for the specific request; note that even in the
presence of multiple web service aggregators sending
execution requests to the same installations, the
generation of unique identifiers is still possible, as
described in [16]. The request identifier is included in
each web service execution request. Furthermore, the
value provider specification (used for input parameters
that will be produced by other web services in the
context of the composite web service execution) has the
format (provider_address, source_request_identifier),
while the value recipients specification (used as a
distribution list for output parameters) is a list of
(recipient_address, target_request_identifier,
target_part_name). When the recipient is the aggregator,
the target_request_identifier field in fact identifies the
client request for which this result has been produced.

Under this scheme, when a web service streamliner
receives a result from the invocation of the (local) web
service, it firstly extracts the individual parts (output
parameters) from the reply message. For each such part,
the associated recipient list is traversed and, for each list
node it constructs parameter transfer message
(providing_request_identifier, target_request_identifier,

target_part_name, part_value) which is sent to the web
service streamliner running at the network address
recipient_address. In this message, the
providing_request_identifier is the identifier of the web
service execution request that produced the result,
part_value is concrete value of the output parameter,
while the values for recipient_address,
target_request_identifier, target_part_name are the
corresponding elements from the recipient list entry.

Conversely, when a web service streamliner receives a
parameter transfer message from a streamliner running
at network address sending_address (sending_address is
not included in the message body but the streamliner
requests it from the network layer) it processes it as
follows:

1. it determines if a web service execution request with

identifier equal to target_request_identifier exists in
the pending request queue. If not, the parameter
transfer message is placed into the unclaimed
parameter repository and the process terminates;
otherwise, the service execution request record
SERR is extracted and algorithm proceeds with the
next step.

2. the input parameter list for SERR is scanned to

locate the target_part_name designated in the
parameter transfer message. If for this parameter a
concrete value has been provided by the web service
aggregator, or is value has already been provided by
a previous parameter transfer message, then the
current parameter transfer message is dropped.

3. If a value for the designated part is indeed waited for,

then the value provider specification for this part is
examined. More specifically, the provider address in
this specification is matched against the
sending_address (determined previously by
querying the network layer) and the
source_request_identifier in the specification is
matched against the providing_request_identifier in
the parameter transfer message. If either value is
found to be different, then the parameter transfer
message is rejected, and the algorithm terminates.

4. Finally, the particular input parameter of SERR is

bound to part_value. If no more input parameters of
SERR remain to be bound, then the web service
specified therein may commence its execution.

The same algorithm is employed for matching
parameters in the unclaimed parameter repository
against incoming service execution requests.

Note that the third step in the previously described
algorithm is not necessary for matching incoming
parameters with requests, but is introduced for security
purposes, serving as a safeguard against malicious
entities that attempt to send counterfeit results to

streamliners. With this check present, a malicious entity
trying to provide a bogus parameter value for a
particular web service execution should be able to
correctly determine (guess or eavesdrop) the request
identifier of both involved web service execution
requests (producer and consumer) and spoof [17] the
network address of the legitimate producer. If request
identifiers are carefully drawn from a large domain (e.g.
128 bits), similarly to the way HTTP session identifiers
are selected [18], it will be infeasible for an attacker to
correctly guess both request identifiers and thus deceive
the receiving streamliner into accepting the counterfeit
parameter. Anti-spoofing techniques [17] may also be
employed in the network layer to further harden the
defense against attacks of this type.

In order to clarify the execution procedure, consider the
example illustrated in Figure 4, where the installation of
organizations #1 and #2 run at addresses A1 and A2,
respectively. The web service aggregator, after
accepting the request from the citizen providing the
values “1234567890”, “Johnson John” and “Someplace
42” for the respective input parameters, formulates the
following two requests, depicted in Table 1:

Table 1. Requests for the Passport Issuance Example
<req_id>10</req_id>
<serviceId name="Birth Certificate Issuance”/>
<input>
 <part name="ssn" concrete_val="1234567890"/ >
 <part name="name" concrete_val="Johnson John"/>
</input>
<output>
 <part name="BithCert">
 <recipients>
 <recipient addr="A2" reqId="35" part="cert"/>
 </recipients>
 </part>
</output>
<req_id>35</req_id>
<serviceId name="Passport Issuance"/>
<input>
 <part name="address" concrete_val="Someplace 42">
 <part name="cert" prov_addr="A1" prov_req_id="10"/>
</input>
<output>
 <part name="Passport">
 <recipients>
 <recipient addr="Aggregator" reqId="987654321"
 part="Passport"/>
 </recipients>
</output>

The first request (id = 10) is sent to the streamliner of
organization #1, while the second one (id = 35) is sent
to the streamliner of organization #2.

The request within organization #2 cannot be executed,
since an input parameter value (cert) is missing, thus it
is placed in the pending request queue. Request #1
however can be processed, thus the web service
streamliner at A1 invokes the Birth Certificate Issuance
service which returns a concrete birth certificate, which

we will denote as BirthCertificate_Value. The
streamliner at A1 should now forward this result to the
streamliner at A2, as specified in the request; to this end,
it formulates a message (10, 35, cert,
BirthCertificate_Value), which is sent to the target
address (streamliner at A2). Upon receiving this
message, the streamliner at A2 locates the entry for the
service request with id equal to 35 in the pending
request queue, and verifies that a value for part cert is
indeed expected; subsequently it checks that the
parameter transfer message has indeed been received
from network address A1 and that the providing request
identifier in the message is actually equal to 10. Since
both checks succeed, the value BirthCertificate_Value is
bound to the input parameter cert. Now, all parameters
for the invocation of the Passport Issuance web service
are available, thus it is invoked and its result is collected
and returned to the service aggregator, as specified in
the recipient list for the Passport output part in the
second request. The service aggregator collects the
value and correlates it with the initial client request
using the reqId value in the message; since the response
to the client is now complete, the response is assembled
and sent to the citizen, concluding the execution of the
composite service.

CONCLUSIONS – FUTURE WORK

In this paper we have presented a method for
streamlining the execution of web services that need to
communicate in a “producer/consumer” fashion for the
realization of a composite task. The proposed method
eliminates unnecessary data transmissions, decreasing
thus network load and improving performance;
additionally it enables producers and consumers to
communicate directly, facilitating the exploitation of
trust relationships that may exist between them. Web
service streamlining complements the “traditional” web
service invocation paradigm, thus the involved web
services remain available for streamlining-unaware
consumers that wish to invoke them. Future work will
include experimental quantification of the benefits
through simulation, the full implementation and
integration of the mechanism into operational systems
and optimization of streamlined execution, both at
service-composition time and at runtime.

REFERENCES

[1] Papazoglou M. P., Georgakopoulos, D,
“Service-oriented computing”, Communications of
the ACM, Vol. 46, No. 10, pp. 25-28, 2003

[2] Newcomer E. “Understanding Web Services: XML,
WSDL, SOAP, and UDDI”, Addison Wesley
Professional, 2002. ISBN: 0201750813

[3] Bercic B., Vintar M., “Ontologies, Web Services,
and Intelligent Agents: Ideas for Further
Development of Life-Events Portals”, Proceedings
of EGOV 2003, LNCS 2739, pp. 329-334, 2003

[4] Papazoglou, M.P., “Service -Oriented Computing:

Concepts, Characteristics and Directions”,
Proceedings of the Fourth International Conference
on Web Information Systems Engineering
(WISE’03), pp3-12, 2003

[5] Bunting D. et al., “Web Services Composite
Application Framework (WS-CAF)”, Ver1.0, 2003,
http://developers.sun.com/techtopics/webservices/ws
caf/primer.pdf

[6] Casati, F., Ilnicki, S., Jin L.J., Krishnamoorthy V.,
Shan M.C. “Adaptive and Dynamic Service
Composition in eFlow”. Proceedings of Advanced
Information Systems Engineering: 12th International
Conference, CAiSE 2000, pp. 13-31, Stockholm,
Sweden, 2000

[7] Lepouras, G., Vassilakis, C., Sotiropoulou, A.,
Theotokis, D., Katifori, A., “An Active
Ontology-based Blackboard Architecture for Web
Service Interoperability”, proceedings of the Second
IEEE Conference on Service Systems and Service
Management, pp. 573-578, 2005

[8] Peltz C., “Web Services Orchestration”, Hewlett
Packard, Co., January 2003,
http://devresource.hp.com/drc/technical_white_pape
rs/WSOrch/WSOrchestration.pdf

[9] Vacca, J.R., “Public Key Infrastructure: Building
Trusted Applications and Web Services”,
AUERBACH, 2004, ISBN: 0849308224

[10] Tambouris E., “An Integrated platform for
Realising Online One-Stop Government: The eGov

Projet”, Proceedings of the DEXA International
Workshop “On the Way to Electronic Government”,
IEEE Computer Society Press, Los Alamitos, CA, p.
359-363, 2001

[11] Maamar Z., Kouadri S. M., Yahyaoui H., “A Web
Services Composition Approach based on Software
Agents and Context”, Proceedings of the 2004 ACM
Symposium on Applied Computing, pp. 1619-1623,
2004

[12] Iona Technologies, “The Artix Enterprise Service
Bus”, 2005, http://www.iona.com/products/artix

[13] BEA, IBM, and Microsoft, “Business Process
Execution Language for Web Services (BPEL4WS)”,
2003, http://xml.coverpages.org/bpel4ws.html

[14] IBM Web Services Flow Language (WSFL), 2003,
http://xml.coverpages.org/wsfl.html

[15] OntoGov project, “User Requirements and
Specifications”, Project Deliverable D4, available
from http://www.ontogov.com

[16] Tanenbaum A.S., “Modern Operating Systems”,
Prentice Hall, Englewood Cliffs, N.J., 1992

[17] Heberlein, L., Bishop, M., “Attack Class: Address
Spoofing”, Proceedings of the 19th National
Information Systems Security Conference, pp.
371-377, 1996

[18] Gutterman, Z., Malkhi, D., “Hold Your Sessions:
an Attack on Java Servlet Session-id Generation”,
Proceedings of Cryptographers' Track, RSA
Conference, pp44-57, 2005

http://developers.sun.com/techtopics/webservices/ws
http://devresource.hp.com/drc/technical_white_pape
http://www.iona.com/products/artix
http://xml.coverpages.org/bpel4ws.html
http://xml.coverpages.org/wsfl.html
http://www.ontogov.com

