
Transaction Support in a Temporal DBMS

Costas Vassilakis
Department of Informatics, University of Athens

Panepistimiopolis, TYPA buildings, 15771, Athens, Greece

Nikos Lorentzos
Agricultural University of Athens

Iera Odos 75, 11855, Athens, Greece

Panagiotis Georgiadis
Department of Informatics, University of Athens

Panepistimiopolis, TYPA buildings, 15771, Athens, Greece

Abstract

Transactions are a significant concept in database systems, facilitating
functions both at user and system level. However transaction support in
temporal DBMSs has not yet received enough research attention. In
this paper, we present techniques for incorporating transaction support
in a temporal DBMS, which is implemented as an additional layer to a
commercial RDBMS. These techniques overcome certain limitations
imposed by the underlying RDBMS, and avoid excessive increment of
the log size.

1. Introduction.

Transactions are an important feature of database systems. At user level,
transactions are the unit of integrity ([1]), allowing the database to go from a valid
state to another passing from an invalid state, provide the ability to undo erroneous
changes, and provide an atomic, "all-or-nothing" abstraction ([2]), which makes
programming tasks easier. At system level transactions constitute the unit of
sharing ([1]), and recovery. For example, locks acquired during a session are
released at the end of the active transaction and after a system failure the database
can be restored to its state, at a COMMIT point.
 In this paper, we present techniques for incorporating transactions in a layered
temporal DBMS ([3]). The temporal DBMS uses an interval extended relational
model ([4]), for temporal data representation. VT-SQL ([5]), a consistent extension
to SQL89, is its data definition and manipulation language. Data are timestamped
at tuple level, and valid time relations are coalesced. The temporal DBMS is split
in two layers, the lower one being a commercial RDBMS (INGRES), which is used
for data storage and retrieval. The kernel of the RDBMS has been extended, to

support an additional data type, DATEINTERVAL, as well as operations on this
type. The upper layer is the temporal engine, coded in C and embedded SQL,
which supports the valid time semantics. One component in this layer is VT-RA, a
Valid Time Relational Algebra. Figure 1 illustrates the overall temporal RDBMS
architecture.

Extended
INGRES

kernel
Databases

RDBMS

Execution
procedures

VT-RA
Library

Temporal Engine

Lexical
analysis

Syntax
checking

Parser

Input
manager

User

Figure 1 - Temporal RDBMS architecture

 Transaction support in such a layered temporal RDBMS cannot rely on the
support offered by the RDBMS for two reasons:
1. In many cases, the temporal engine must create temporary tables to store

intermediate results (e.g. the table holding the updated tuples in the execution of
the UPDATE statement or the table holding the result of the extended SELECT, in
the execution of the INSERT statement, according to the algorithms presented
below). However, in some DBMSs (e.g. ORACLE), issuing a DDL statement,
such as CREATE TABLE or DROP TABLE, introduces an implicit commit point
([6]), so changes to the database state made before that point, cannot be undone
using a ROLLBACK statement. Other DBMSs (e.g. Sybase) disallow the usage of
DDL statements within multi statement transactions ([7]).

2. Writing results to intermediate tables is logged (as all modification operations
are). Since, the execution procedures of the VT-SQL statements produce
substantial amount of intermediate results, the size of the log space increases
considerably. Thus, techniques should be developed to reduce log space
requirements.

 The rest of this paper is organised as follows: In section 2, the Valid Time
Relational Algebra is presented, in brief. In section 3, the syntax and semantics of
VT-SQL are described. Section 4 presents the algorithms used for the DML
statements, in order to provide transaction support. Section 5 addresses protection
and crash recovery issues arising from the techniques described in section 4. The
last section concludes and outlines future work.

2. Valid time relational algebra.

The design of the temporal RDBMS has been based on Valid Time Relational
Algebra (VT-AL) ([4]), a consistent extension to Codd’s algebra ([8]). New data

types have been introduced for the representation of time, namely DATE and
DATEINTERVAL. Date literals have the format YYYY-MM-DD, which is a more
readable form of the ANSI standard. DATEINTERVAL values are denoted as [di,
dj), where di and dj are dates, and di is before dj. A DATEINTERVAL value
contains all dates from di and up to, but not including d j. VT-RA defines
transformations between the representations of time (points and intervals), new
predicates for interval comparison, as well as extended UNION and EXCEPT
operations, which are applicable to relations containing attributes of type DATE
and/or DATEINTERVAL. These operations are described briefly in the following
paragraphs. A detailed presentation can be found in [4] and [9].

2.1 Fold.

Let R be a relation whose schema is (A1, A2, ..., An). When R is folded on column
Ai (denoted as FOLD[Ai] (R)), where the domain of Ai is of a DATE or
DATEINTERVAL type, all its tuples whose Aj columns have identical values ∀ j ≠
i, and their Ai columns can merge (i.e. are overlapping or adjacent), are replaced in
the resulting relation by a single tuple with the same values in the A j
columns∀ j ≠ i, but its i-th component is formed by the merging of the i-th
components of these tuples. For example, if SALARY is any of the relations in
figure 2, then FOLD[Time] (SALARY) yields the relation in figure 3.
 The FOLD operation may apply to multiple columns. This is denoted by
FOLD [Ai1, Ai2, ..., Ain] (R), and is equivalent to folding relation R on column A i1,
then on column Ai2 and so on up to column Ain.

 SALARY SALARY
 Name Amount Time Name Amount Time

John 10K d1 John 10K [d1, d3)
John 10K d2 John 10K [d2, d5)
... John 10K [d10, d15)
John 10K d4 Alex 12K [d1, d10)
John 10K d10 Alex 12K [d10, d15)
... Alex 12K [d15, d18)
John 10K d14 Alex 12K [d16, d20)
Alex 12K d1
...
Alex 12K d19

 (a) (b)

Figure 2 - Two valid time relations

 SALARY
Name Amount Time

John 10K [d1, d5)
John 10K [d10, d15)
Alex 12K [d1, d20)

Figure 3 - A valid time relation

2.2 Unfold.

When a relation R is unfolded on attribute A i (denoted as UNFOLD [Ai] (R)),
where the domain of Ai is of a DATE or DATEINTERVAL type, each tuple (t1, ...,
ti-1, ti, ti+1, ..., tn) of R is replaced in the resulting relation by a family of tuples (t1,
..., ti-1, tij, ti+1, ..., tn), where each tij is a date included in ti (as a trivial case, a date
is considered to include only itself). For example, if SALARY is the relation in
figure 3, then UNFOLD[Time] (SALARY) yields the relation in figure 2(a). An
UNFOLD may apply to multiple columns; this is denoted by
UNFOLD [Ai1, Ai2, ..., Ain] (R), and is equivalent to unfolding relation R on
column Ai1, then on column Ai2 and so on up to column Ain.

2.3 Normalise.

The NORMALISE operation can be applied to multiple columns of type DATE or
DATEINTERVAL. It is denoted by NORMALISE [Ai1, ..., Ain] (R), and is
semantically equivalent to FOLD [A i1, ..., Ain] (UNFOLD [Ai1, ..., Ain] (R)). The
NORMALISE operation is thus introduced for notational convenience.

2.4 PUnion.

The PUNION operation can be applied to two union-compatible relations and
operates on multiple columns of type DATE or DATEINTERVAL. Two relations R
and S are union-compatible if:
1. The number of columns in R is the same as the number of columns in S and
2. Column Ri is type-compatible with column Si, ∀ i.
 The PUNION operation of two relations R and S is denoted by R PUNION
[Ai1, ..., Ain] S and is equivalent to applying NORMALISE [Ai1, ..., Ain] to the
result of R UNION S. For example, if a relation S has a single tuple,

(John, 10K, [d3, d12))

and SALARY is the table in figure 3, then the result of SALARY PUNION
[Time] S consists of the two tuples

(John, 10K, [d1, d15))
(Alex, 12K, [d1, d20))

2.5 PExcept.

The PEXCEPT operation can be applied to two union-compatible relations and
operate on multiple columns of type DATE or DATEINTERVAL. The PEXCEPT
operation of two relations R and S is denoted by R PEXCEPT [A i1, ..., Ain] S and is
equivalent to applying the FOLD [Ai1, ..., Ain] operation to the result of the

UNFOLD [Ai1, ..., Ain] (R) EXCEPT UNFOLD [Ai1, ..., Ain] (S)

operation. For example, if a relation S consists of the two tuples

(John, 10K, [d10, d15))
(Alex, 12K, [d10, d15))

and SALARY is the table in figure 3, then SALARY PEXCEPT [Time] S consists
of the tuples

(John, 10K, [d1, d5))
(Alex, 12K, [d1, d10))
(Alex, 12K, [d15, d20))

 Tables which require the use of PUNION (PEXCEPT) for data insertion (deletion)
rather than UNION (EXCEPT) are called normalised.

3. VT-SQL syntax and semantics.

The DDL statements of VT-SQL are the same as in SQL, except for the CREATE
TABLE statement, which has been extended to allow for the specification of the
primary key of a valid time table (see section 3.2, below). In the following
paragraphs, therefore, the syntax and semantics of the VT-SQL DML statements is
presented. A complete presentation of the VT-SQL syntax and semantics, can be
found in [5]. In the syntax, which follows, terms enclosed in brackets ([]) are
optional; braces ({}) are used for items that may be repeated zero or more times;
parentheses are used for grouping, and single quotes are used for parentheses which
must be typed literally; capitals indicate reserved words and italics are used for
user-provided values.

3.1 The Select statement.

The VT-SQL syntax for the SELECT statement is

extended-select
[(UNION | UNION ALL | EXCEPT) [ResultColumnList]
[extended-select]
[ORDER BY ResultColumn [ASC | DESC]

{, ResultColumn [ASC | DESC]}]

 The extended-select is defined as

sql-select
[REFORMAT AS [(FOLD | UNFOLD) columnList

{(FOLD | UNFOLD) columnList}]
[NORMALISE ON ResultColumnList]

(Note than another version of UNFOLD, namely UNFOLD ALL, is also described
in [9] but has been omitted here, for brevity reasons.) An extended-select is
executed by evaluating its sql-select part, and then applying the
REFORMAT/NORMALISE operations specified by the corresponding clauses. If the
VT-SQL select statement includes a second extended-select, then the result of each
of the two extended-select is computed, and a VT-RA operation is applied to them,
in order to evaluate the final query outcome (this presumes that the schemata of the
results of the two extended-selects are union-compatible). The UNION keyword
specifies that either the VT-RA PUNION or the standard UNION operation should be
applied, depending on whether the keyword UNION is followed by a column list or
not, respectively. In the former case, the column list specifies the columns on which
the PUNION operation will normalise the final result; these columns must be of type
DATEINTERVAL or DATE. The ALL keyword may follow the UNION keyword,
indicating that duplicate occurrences of result tuples should be retained.
Analogously, the EXCEPT keyword specifies that either the PEXCEPT or EXCEPT
operation must be applied, depending on whether the keyword is followed by a
column list or not. Finally, the ORDER BY clause follows the SQL89 specification.

3.2 The Insert statement.

The syntax of the VT-SQL INSERT statement is identical with that of the SQL
INSERT, except one case: If the tuples to be inserted are specified by a query, this
query may be an extended-select. When data are inserted in a non-normalised
table, the semantics of the INSERT statement are identical with the semantics of its
SQL counterpart. If, however, the tuples are inserted into a normalised table, then
an ordinary insertion takes place, followed by a NORMALISE operation on the
appropriate columns.
 The concept of the key of a table has been extended to normalised relations.
Thus, the key of SALARY, in figure 3, is <Name, Time-p>. This means that

SALARY may never contain two tuples, t1 and t2, which satisfy both (i) t1.Name =
t2.Name and (ii) t1.Time and t2.Time are two dateintervals which have at least
one date in common. We say that SALARY preserves the uniqueness of the
primary key at a date level.
 If the key of a normalised relation R has been defined and a piece of data, which
is to be inserted, has already been recorded in R, then the transaction is aborted.
For example, consider SALARY, in figure 3, with key <Name, Time-p>. If we
issue the command

INSERT INTO SALARY
VALUES (’John’, 10K, ’[d4, d10)’)

the insertion will fail, because John’s salary for date d4 is already in SALARY.
This implementation convention is an extension of that in standard SQL.

3.3 The Delete statement.

A PORTION clause has been added to the DELETE statement, which may be used
when deleting data from a normalised table. If the PORTION is present in a DELETE
statement, it designates the valid time period to which the deletion applies. If the
PORTION clause is not specified, the deletion applies to whole tuples. For example,
after the execution of the command

DELETE FROM SALARY
PORTION Time = ’[d3, d12)’
WHERE Name = ’John’

then SALARY, in figure 3, will consist of the tuples

(John, 10K, [d1, d3))
(John, 10K, [d12, d15))
(Alex, 12K, [d1, d20))

3.4 The Update statement.

When updating a non-normalised table, UPDATE behaves exactly as in SQL. If,
however, the table is normalised, the update is followed by a NORMALISE operation
on the appropriate columns. Analogously to the DELETE statement, the UPDATE of a
normalised table may contain a PORTION clause, which specifies the valid time
period to which the update is applied. For example, the command

UPDATE SALARY
PORTION Time = ’[d3, d5)’
SET Name = ’Tom’
WHERE Name = ’John’

will result in that SALARY, in figure 3, will consist of the tuples

(John, 10K, [d1, d3))
(John, 10K, [d10, d15))
(Tom, 10K, [d3, d5))
(Alex, 12K, [d1, d20))

 Again, if the table preserves the uniqueness of the primary key at a date level,
the transaction is aborted if the update may result in a table, which violates this
uniqueness.

4. Transaction support.

Transaction support can be facilitated in a layered temporal RDBMS by having the
temporal engine connected twice to the RDBMS, thus opening two sessions, the
user session and the system session. User tables are always accessed (both for
reading and writing) through the user session. The system session is used in order
to issue to the RDBMS the DDL statements which create or drop the temporary
tables, as well as the DML statements which insert or modify data in these tables.
Data in the temporary tables can be read by both the user and the system session.
 Different sessions to the RDBMS have independent commit modes, i.e.
statements issued through a session do not affect the commit status of other
sessions. Locking also takes place at session level, i.e. objects locked in shared or
exclusive mode by one session are not available for update or access to other
sessions, so care must be taken that the locking scheme does not lead to deadlocks.
 In the following paragraphs, the usage of the two sessions, as well as the
locking schemes employed, to provide full transaction support, are described in
detail.

4.1 The Select statement.

Three cases are considered for the evaluation of the SELECT statement (for a
complete description, see [3]):
1. If the SELECT statement does not imply the application of operations not

supported by the RDBMS (i.e. REFORMAT, NORMALISE, PUNION and PEXCEPT
operations), the temporal engine opens a cursor through the user session, for the
user query. The result tuples are fetched through this cursor and presented to
the user.

2. If the user query consists of only one extended-select then the following steps
are taken:

A. A temporary table is created through the system session, whose schema
matches the schema of the table resulting from the sql-select. A cursor is
opened through the user session for the sql-select part of the user query.

B. The cursor opened in step (A) is used to fetch the result tuples, which are
inserted into the temporary table through the system session. When all result
tuples have been inserted into the temporary table, the system session
commits, emptying its log space.

C. The REFORMAT and NORMALISE clauses are executed from within the system
session. As soon as each operation stated in each clause completes, the
temporary table holding the results of the previous step is dropped through
the system session, and the system session commits.

D. The tuples contained in the final intermediate table are fetched through the
system session, and forwarded to the user. When all data has been
exhausted, the final intermediate table is dropped through the system
session, and the system session commits.

3. If the user query consists of two extended-select statements, combined by a
UNION, EXCEPT, PUNION, PUNION ALL or PEXCEPT operation, then the
following procedure is used:
A. Steps (A)-(C) of case 2 are performed to evaluate each of the extended-select

statements, storing the results in intermediate tables.
B. The UNION, EXCEPT, PUNION, PUNION ALL or PEXCEPT operation is applied

through the system session to the intermediate tables produced in step (A),
and the results are stored in a temporary table. Upon operation completion,
the intermediate tables produced in step (A) are dropped through the system
session, and the system session commits.

C. The tuples contained in the temporary table created in step (B) are fetched
through the system session, and forwarded to the user. Finally, the
temporary table is dropped through the system session, and the system
session commits.

 The execution procedure described above for the SELECT statement does not
introduce any implicit commit points for the user session and does not expand the
user session log file (only the system session's log is expanded, but only transiently,
as it is truncated at the system session's commit points). Furthermore, since the user
tables are handled by the user session and all temporary tables are accessed through
the system session, no deadlock problems are introduced.

4.2 The Insert statement.

Insertions issued against non-normalised tables, can directly be forwarded for
execution, through the user session, to the underlying RDBMS. The algorithm
employed for data insertion in a normalised table R considers four distinct cases
([10]), (i)-(iv), below. In the sequel, the columns of any table R will be denoted as
Rc1, Rc2, ..., RcN, Rvt, with Rvt being the column storing the valid time of the tuple.
Columns not participating in the primary key -which includes all the columns from
Rc1 through RcN if no primary key is defined on the table- will be denoted as RnonKey,

and columns participating in the primary key -except for Rvt- will be referenced as
Rkey.
Case (i): The values to be inserted are specified by means of the VALUES clause,
and no primary key is defined on the table.
 The temporal engine opens a cursor ins_cur on the target relation through the
user session, selecting all tuples which are value equivalent to the insertion tuple
(i.e. each column in RnonKey is equal to the corresponding column in the insertion
tuple) and have overlapping or adjacent valid times. Each qualifying tuple is
deleted from the target relation through cursor ins_cur (for which the fetched tuple
is current), and the valid time of the insertion tuple is replaced by the union of its
former value and the timestamp of the deleted tuple (the union of two adjacent or
overlapping dateintervals is a dateinterval containing all time points in both
arguments). Finally, the insertion tuple is appended to the target relation, through
the user session.
 In this case, all interaction with the RDBMS is performed through the user
session, so no deadlock problems are introduced. Furthermore, changes to the
database state are almost minimal, so log size increment is kept low (the minimum
changes would be deleting all the selected value equivalent tuples except the last
one, whose timestamp should be updated to the union of the timestamps of all the
selected value equivalent tuples. However, cursors provide no indication whether
the current tuple is the last or not, so this approach would require a second scan of
the table, which would penalise the performance unacceptably).
Case (ii): The values to be inserted are specified by means of the VALUES clause,
and a primary key has been defined on the table .
 The algorithm starts off with one insertion tuple, holding the values specified in
the VALUES clause. A savepoint Save1 is created for the user session (the name of
the savepoint is actually a unique, system-generated string), and a cursor ins_cur is
opened on the target table, through the user session, selecting all tuples for which
all the columns in Rkey have values equal to the values of the corresponding table in
the insertion tuple, and their valid times are adjacent or overlapping to the
timestamp of the insertion tuple. For each tuple that is fetched through the cursor,
the following checks are made:
1. If the valid time of the fetched tuple is overlapping with the valid time of the

insertion tuple, then the INSERT statement violates primary key uniqueness. The
user session is rolled back to the savepoint created at the beginning of the
algorithm, by issuing a

 ROLLBACK TO Save1

 statement through the user session, and further processing is aborted.
2. If all columns in RnonKey of the fetched tuple have values equal to the

corresponding columns of the insertion tuple, then the fetched tuple is deleted
from the target table, through cursor ins_cur, and the valid time of the insertion
tuple is replaced by the union of its former value and the value of the fetched
tuple's valid time.

3. In all other cases, i.e. if any column in RnonKey of the fetched tuple is not equal to
the corresponding column of the insertion tuple, the algorithm continues with
the next tuple.

 When no more tuples can be fetched through the cursor, the insertion tuple is
appended to the table, through the user session.
Remarks about locking problems and log size increment for the previous case (in
which no primary key is defined), hold for this case too.
Case (iii): The values to be inserted are specified by means of an extended-select
query, and no primary key has been defined on the table.
 The extended-select is evaluated as described in paragraph 4.1, and the result is
stored in a temporary table (if the query can directly be supported by the RDBMS, a
cursor is opened through the user session, fetching the result tuples, which are
stored in a temporary table, through the system session; if the query consists of an
SQL SELECT, followed by a REFORMAT and/or a NORMALISE clause, then only steps
(A) to (C) are performed). The temporary table holding the results of the
extended-select will be denoted as T1 (its name is actually a unique, system-
generated string). Subsequently, the temporal engine opens a cursor on table R
through the user session, selecting all tuples which can be coalesced with any tuple
in T1, i.e. tuples for which every column in RnonKey has value equal to the
corresponding column in T1nonkey and the value of Rvt is overlapping or adjacent to
the value of T1vt. Since tuple fetching through this cursor implies access to table T1,
which will be dropped afterwards through the system session, it is important that
this access does not place any locks on the tuples of T1. This is accomplished by
issuing a statement

SET LOCKMODE ON TABLE T1 WHERE READLOCK = NOLOCK;

through the user session, prior to opening the cursor (this command is an INGRES
extension to SQL89 ([11]); the syntax in other DBMSs may be different). Each
qualifying tuple is fetched into memory, and deleted from the target table, through
the user session, and subsequently inserted through the system session in table T1.
Afterwards, the system session is used to perform a normalisation operation on
table T1, each tuple of the FOLD operation's result is fetched into memory through
the system session, and inserted into the target table through the user session.
Finally, the temporary tables are dropped through the system session, and the
system session commits.
 This algorithm does not present deadlock problems, since when the user session
accesses the temporary tables, created and altered through the system session, it
does so without requiring or imposing any locks. During these accesses, the system
session is quiescent, so no concurrency problems are introduced, due to absence of
locks. Finally, the only changes made through the user session are the deletions of
the tuples that can be coalesced with any of the insertion tuples, plus the actual
insertion of the resulting tuples in the target table, keeping log size increment at
reasonable levels.

Case (iv): The values to be inserted are specified by means of an extended-select
query, and a primary key has been defined on the table .
 A savepoint is introduced for the user session, the extended-select is evaluated
and the results are stored in a temporary table, as described for the previous case.
Afterwards, the temporal engine renounces its locking rights for the user session on
table T1 by issuing a statement

SET LOCKMODE ON TABLE T1 WHERE READLOCK = NOLOCK;

through the user session; the same session is used to open a cursor, on the join of
the target table and T1, selecting those tuples for which all columns in RKey have
values equal to the corresponding columns of table T1 and Rvt is overlapping or
adjacent to T1vt. For each one of these tuples, all columns of table R, and columns
in T1nonKey and T1vt are fetched into the main memory, and the following checks are
made:
1. If the values of Rvt and T1vt are overlapping, the insert operation is aborted, due

to the presence of duplicate keys; the database is rolled back to the savepoint
introduced at the beginning of the algorithm execution, and further processing
is aborted.

2. If the values of Rvt and T1vt are adjacent, and all columns in RnonKey have values
equal to the corresponding columns in T1nonKey, the current tuple of the target
table is deleted, through the user session, and subsequently inserted into T1,
through the system session (the values are currently into the main memory, so
they can be inserted immediately).

3. In all other cases, the fetched tuple is ignored.
 When this process completes, the system session commits, and a cursor is
opened on table T1, through the system session, fetching all the fields of each row,
sorted on columns T1key, T1vt, T1nonkey, in that order. The first row is fetched and
marked as working tuple, and the algorithm proceeds as follows:
1. The next tuple is fetched through the cursor. If data has been exhausted,

working tuple is inserted into the target table through the user session and the
algorithm continues with step (5), otherwise the fetched tuple is marked as
current tuple, and the algorithm continues with step (2).

2. If the value of any of the columns in T1key is different in working tuple and
current tuple, or the values of T1vt in the two tuples are neither overlapping nor
adjacent, then working tuple is inserted into the target table through the user
session, current tuple replaces working tuple and step (1) is performed again.

3. If the values of T1vt in working tuple and current tuple are overlapping, then the
operation produces duplicate keys; the database is rolled back to the savepoint
introduced at the beginning of the algorithm execution and further processing is
aborted.

4. If the value of any of the columns in T1nonKey is different in working tuple and
current tuple, then working tuple is inserted into the target table through the
user session and current tuple replaces working tuple; otherwise, T1vt in
working tuple is replaced by the union of its former value and the value of T1vt
in the current tuple and current tuple is discarded and control passes to step (1).

5. Temporary tables are dropped through the system session and the system
session commits.

 The remarks made about the absence of deadlocks and log size increment for
the previous case, hold for this case too.

4.3 The Delete statement.

If the PORTION clause is not specified in the DELETE statement, the request is
directly forwarded to the underlying RDBMS for execution, through the user
session. If, however, the PORTION clause is specified, the following actions are
taken, in order to satisfy the user request: The temporal engine opens, through the
user session, a cursor on the target table, selecting the rows matching the criteria
stated in the WHERE clause and having valid times overlapping with the period
specified in the PORTION clause (denoted as period, hereafter). For each selected
tuple, the values of all fields along with the value of period are fetched into main
memory, and one of the following actions is taken:
1. If the value of period is a superinterval of the value of Rvt, then the tuple is

deleted from the target table, through the user session.
2. If the difference Rvt - period yields exactly one interval (i.e. the time points

included in Rvt but not in period are consecutive and, consequently, can be
represented by a single DATEINTERVAL value) then the value of Rvt of the
current tuple is set to Rvt - period, through the user session.

3. If the difference Rvt - period yields two intervals, diff1 and diff2, the value of Rvt
of the current tuple is set to diff1, and a new tuple is appended to the target
table, for which columns Rc1, ..., RcN are equal to the values of the
corresponding columns in the current tuple, whereas the value of column Rvt is
equal to diff2. Both the value change and the tuple insertion are performed
through the user session.

 Since the whole interaction is performed through the user session, the algorithm
is deadlock free. The changes made to the database state are also kept to an
absolute minimum, resulting in the minimum increment to the log size.

4.4 The Update statement.

If the UPDATE statement is applied to a non-normalised table, the UPDATE can
directly be forwarded for execution to the underlying DBMS. If, however, the target
table is normalised, then the following cases are considered:
Case (i): The table has no primary key, and the PORTION clause is not specified.
 The temporal engine opens a cursor on the target table, through the user
session, selecting tuples qualifying with respect to the WHERE clause. For each
selected tuple, the updated values of the fields changed by the SET clause, rather
than the original values are fetched; the current tuple is deleted from the table,
through the user session, and a tuple containing the updated values is stored in a
temporary table, through the system session (the table will be denoted as
update_temp and is created through the system session). When all qualifying tuples
have been fetched, the system session commits, and the algorithm described for

case (iii) in paragraph 4.2 is employed to insert the tuples in update_temp into the
target table (obviously, the step involving the execution of the extended-select is
not performed; table T1 mentioned in paragraph 4.2 is actually the update_temp
table, produced in the previous step).
 No deadlock problems are introduced through this algorithm, since the user
session is used to access the user table, and subsequently a deadlock-free insertion
algorithm is used. Log size increment is kept low, since every tuple update maps to
one deletion and one insertion through the user session (actually, more deletions
can performed, if some updated tuple can be coalesced with some tuple which is not
updated).
Case (ii): The table has no primary key and the PORTION clause is specified.
 The temporal engine opens a cursor on the target table through the user session,
selecting the tuples which qualify with respect to the WHERE clause and for which
the value of Rvt overlaps with the value of the period specified in the PORTION
clause. For each qualifying tuple, all the original values of the columns, the new
values for the columns to be updated and the value of the period in the PORTION
clause are fetched into main memory, the part of the tuple corresponding to the
period specified in the PORTION clause expression is deleted from the target table
(following the optimised algorithm of the DELETE statement), and a tuple is
inserted through the system session into a temporary table update_temp (which will
have been created through the system session). The values of the columns of this
tuples are determined using the following algorithm:
1. If the column appears on the left hand side of an assignment in the SET clause,

then the value of the corresponding right hand side expression is used.
2. If the column is not updated, then its original value is used, except for column

Rvt, for which the value of the expression appearing in the PORTION clause is
used.

 When all qualifying rows have been dealt with, the rows in update_temp are
inserted in the target table using the algorithm described in paragraph 4.2 for case
(iii). (The step of evaluating the extended-select is skipped and update_temp
replaces T1.)
 Remarks made on the absence of deadlocks for the previous case, hold for this
case too. Log size increment is also kept low, with every update mapping to either
one tuple deletion and one insertion, or one update and one insertion or one update
and two insertions, depending on the portion of the tuple which will be updated.
Case (iii): The table has a primary key and the PORTION clause is not specified.
 The algorithm employed for case (i) can be used here, modified so that a
savepoint is introduced for the user session at the begining of the operation, and the
resulting tuples are inserted into the target table using the algorithm for inserting
data in a table for which a key is defined (case (iv) of the INSERT statement, with
the necessary amendments: The step of evaluating the extended-select is skipped,
update_temp replaces T1 and the savepoint introduced at the start of the operation
is used when the database should be rolled back due to primary key uniqueness
violation). Remarks on the absence of deadlocks and log size increment for case (i)
hold for this case too.
Case (iv): the table has a primary key and the PORTION clause is specified.

 The algorithm described for case (ii) can be used for this case, modified so that
a savepoint is introduced for the user session at the begining of the operation, and
the resulting tuples are inserted in the target table using the algorithm for inserting
data in a table for which a key is defined (case (iv) of the INSERT statement, with
the necessary amendments). Remarks on the absence of deadlocks and log size
increment for case (ii) hold for this case too.

5. Protection and crash recovery.

This section presents techniques for dealing with protection and crash recovery
issues, arrising from the algorithms presented in section 4. A protection scheme
which prevents ad-hoc modification of temporary tables is presented in section 5.1,
and an algorithm for removing temporary tables which remained in the database
because of a system crash is described in section 5.2.

5.1 Protection scheme for temporary tables.

The correctness of data contained in temporary tables is a crucial point for the
successful completion of the operations described in the previous sections. Thus, it
is important to prevent users from modifying the contents of temporary tables. User
access to these tables must also be avoided, as locks may be placed, which can lead
to substantial delays (e.g. the system session will have to wait until these locks are
released, before dropping the table) or even deadlocks.
 In general, the life span of temporary tables is limited and, actually, users
ignore the names of temporary tables, so the probability of user access is limited.
However, it is possible that during the evaluation of a complex query or in a period
of increased system load, some user acquires information about the name of a
temporary table (by querying an RDBMS system catalogue) and access it or
modifies it, by issuing a query. Temporary tables can be protected from
unauthorised access using the following techniques:
1. A special user id, e.g. temporal, is created in the RDBMS, and the CREATE

TABLE privilege is granted to this user id for every database handled by the
RDBMS. The system session is opened under this special user id, using the
IDENTIFIED BY clause of the embedded SQL connect statement.

2. If a temporary table must be accessed through the user session, this access is
preceded by the command sequence

 GRANT SELECT ON TempTable TO UserName
 COMMIT
 LOCK TABLE TempTable IN EXCLUSIVE MODE

 which is issued through the system session. (If a LOCK TABLE statement is
not available, the same effect can be accomplished by setting the locking
granularity of the system session to table level, its read access locking mode to
exclusive and accessing a single tuple of the temporary table through it).

TempTable is the name of the temporary table which must be accessed by the
user session, and UserName is the user id under which the user session is
opened. The SELECT privilege is revoked as soon as the user session completes
the necessary access, by issuing the statements

 REVOKE SELECT ON TempTable FROM UserName
 COMMIT

 through the system session.
3. After each COMMIT point of the system session, all existent temporary tables, on

which the SELECT privilege is granted, are locked in exclusive mode.
 Using a different user id for the system session protects the temporary tables
from unauthorised modifications, since none of the INSERT, DELETE and UPDATE
privileges are granted by default to user ids different than the table creator. Read
access to the temporary tables is limited to the period during which it is absolutely
necessary and, when it is permitted, the table is locked in exclusive mode by the
system session. Thus, this access has to be done in the "no lock" fashion employed
by the user session, which eliminates any delay or deadlock possibility.

5.2 Removing remnant temporary tables.

It is possible that, during the execution of a query, requiring the creation of
intermediate tables, either some temporal engine, or the RDBMS, or the computer
system, on which any of these programs are executed, crashes. Since the system
session commits its results with temporary tables present in the database, the
RDBMS considers these tables permanent and will try to preserve them through
system crashes. Therefore, a method must be provided, to remove these tables from
the database. One of the following two approaches can be followed:
1. A naming convention can be adopted for the temporary tables, e.g. their name

should always start with the string tt_temp. When the RDBMS recovers from
a crash, a program can be invoked by the database administrator, which drops
all tables whose name starts with this specified string (the names can be
determined by querying the RDBMS system catalogues). Users should be
warned about this policy, so they will not create a table which might be removed
by this procedure.

2. A special table can be introduced, which can be used by the temporal engine to
store the names of the temporary tables currently present in the database. A
temporary table should then be registered in this catalogue before the CREATE
TABLE statement, which creates this temporary table, is issued to the RDBMS.
The registration should be removed only after the corresponding DROP TABLE
statement has been issued (data insertion and deletion in the catalogue is
performed through the system session). Upon crash recovery, a program is
invoked, which removes from the database all tables registered in this
catalogue.

6. Conclusions - future work.

In this paper, we presented techniques for supporting transactions in a layered
temporal DBMS. The techniques presented exploits the transaction support features
of the underlying RDBMS, using a second connection to it, through which
operations on temporary tables are performed. Care is also taken, so that no
deadlock problems are introduced, as locking is done at session level.
 Future work includes support for multiple interval granularities, multiple valid
time dimensions, transaction support as well as multi-user extensions.

7. References.

[1] C. J. Date, “An Introduction to Database Systems”, Vol. II, Addison-Wesley
Publishing Company.

[2] A. S. Tanenbaum, “Modern Operating Systems”, Prentice Hall Inc., 1992.
[3] C. Vassilakis, N. Lorentzos, P. Georgiadis and Y. Mitsopoulos, “ORES:

Design and Implementation of a Temporal DBMS”, Submitted for
publication.

[4] N. A. Lorentzos, “The interval extended relational model and its application
to valid time databases, Temporal Databases: Theory, Design and
Implementation”, J. Clifford, R. Snodgrass et al (Ed.), Benjamin Cummings,
pp. 67-91, 1993.

[5] ESPRIT III Project 7224 (ORES) Deliverable D2: “Specification of Valid
Time SQL”, April 1993.

[6] ORACLE Corporation, “SQL Language Reference Manual” (for version
6.0), 1990.

[7] Sybase Inc., “Transact SQL User’s Guide” (for release 4.2), 1990.
[8] E. F. Codd, “A relational model of data for large shared data banks”,

Communications of the ACM, 13(6), 377-387, June 1970.
[9] ESPRIT III Project 7224 (ORES) Deliverable C3: “Specification of Valid

Time Formalism”, April 1993.
[10] C. Vassilakis, P. Georgiadis and N. Lorentzos, “An Optimised

Implementation of a Temporal DBMS”, Submitted for publication.
[11] Ingres Corporation, “Ingres SQL and ESQL Reference Manual” (for release

6.4), 1991.

