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Abstract 
 

Transactions are a significant concept in database systems, facilitating 
functions both at user and system level. However transaction support in 
temporal DBMSs has not yet received enough research attention. In 
this paper, we present techniques for incorporating transaction support 
in a temporal DBMS, which is implemented as an additional layer to a 
commercial RDBMS. These techniques overcome certain limitations 
imposed by the underlying RDBMS, and avoid excessive increment of 
the log size. 

1. Introduction. 

Transactions are an important feature of database systems. At user level, 
transactions are the unit of integrity ([1]), allowing the database to go from a valid 
state to another passing from an invalid state, provide the ability to undo erroneous 
changes, and provide an atomic, "all-or-nothing" abstraction ([2]), which makes  
programming tasks easier. At system level transactions constitute the unit of 
sharing ([1]), and recovery. For example, locks acquired during a session are 
released at the end of the active transaction and after a system failure the database 
can be restored to its state, at a COMMIT point. 
 In this paper, we present techniques for incorporating transactions in a layered 
temporal DBMS ([3]). The temporal DBMS uses an interval extended relational 
model ([4]), for temporal data representation. VT-SQL ([5]), a consistent extension 
to SQL89, is its data definition and manipulation language. Data are timestamped 
at tuple level, and valid time relations are coalesced. The temporal DBMS is split 
in two layers, the lower one being a commercial RDBMS (INGRES), which is used 
for data storage and retrieval. The kernel of the RDBMS has been extended, to 



support an additional data type, DATEINTERVAL, as well as operations on this 
type. The upper layer is the temporal engine, coded in C and embedded SQL, 
which supports the valid time semantics. One component in this layer is VT-RA, a 
Valid Time Relational Algebra. Figure 1 illustrates the overall temporal RDBMS 
architecture. 
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Figure 1 - Temporal RDBMS architecture 

 Transaction support in such a layered temporal RDBMS cannot rely on the 
support offered by the RDBMS for two reasons: 
1. In many cases, the temporal engine must create temporary tables to store 

intermediate results (e.g. the table holding the updated tuples in the execution of 
the UPDATE statement or the table holding the result of the extended SELECT, in 
the execution of the INSERT statement, according to the algorithms presented 
below). However, in some DBMSs (e.g. ORACLE), issuing a DDL statement, 
such as CREATE TABLE or DROP TABLE, introduces an implicit commit point 
([6]), so changes to the database state made before that point, cannot be undone 
using a ROLLBACK statement. Other DBMSs (e.g. Sybase) disallow the usage of 
DDL statements within multi statement transactions ([7]). 

2. Writing results to intermediate tables is logged (as all modification operations 
are). Since, the execution procedures of the VT-SQL statements produce 
substantial amount of intermediate results, the size of the log space increases 
considerably. Thus, techniques should be developed to reduce log space 
requirements. 

 The rest of this paper is organised as follows: In section 2, the Valid Time 
Relational Algebra is presented, in brief. In section 3, the syntax and semantics of 
VT-SQL are described. Section 4 presents the algorithms used for the DML 
statements, in order to provide transaction support. Section 5 addresses protection 
and crash recovery issues arising from the techniques described in section 4. The 
last section concludes and outlines future work. 

2. Valid time relational algebra. 

The design of the temporal RDBMS has been based on Valid Time Relational 
Algebra (VT-AL) ([4]), a consistent extension to Codd’s algebra ([8]). New data 



types have been introduced for the representation of time, namely DATE and 
DATEINTERVAL. Date literals have the format YYYY-MM-DD, which is a more 
readable form of the ANSI standard. DATEINTERVAL values are denoted as [di, 
dj), where di and dj are dates, and di is before dj. A DATEINTERVAL value 
contains all dates from di and up to, but not including d j. VT-RA defines 
transformations between the representations of time (points and intervals), new 
predicates for interval comparison, as well as extended UNION and EXCEPT 
operations, which are applicable to relations containing attributes of type DATE 
and/or DATEINTERVAL. These operations are described briefly in the following 
paragraphs. A detailed presentation can be found in [4] and [9]. 

2.1 Fold. 

Let R be a relation whose schema is (A1, A2, ..., An). When R is folded on column 
Ai (denoted as FOLD[Ai] (R)), where the domain of Ai is of a DATE or 
DATEINTERVAL type, all its tuples whose Aj columns have identical values ∀ j ≠ 
i, and their Ai columns can merge (i.e. are overlapping or adjacent), are replaced in 
the resulting relation by a single tuple with the same values in the A j 
columns∀ j ≠ i, but its i-th component is formed by the merging of the i-th 
components of these tuples. For example, if SALARY is any of the relations in 
figure 2, then FOLD[Time] (SALARY) yields the relation in figure 3. 
 The FOLD operation may apply to multiple columns. This is denoted by 
FOLD [Ai1, Ai2, ..., Ain] (R), and is equivalent to folding relation R on column A i1, 
then on column Ai2 and so on up to column Ain. 

 SALARY SALARY 
    Name Amount Time      Name Amount Time 

John 10K d1  John 10K [ d1,   d3) 
John 10K d2  John 10K [ d2,   d5) 
... ... ...  John 10K [d10, d15) 
John  10K d4  Alex 12K [ d1, d10) 
John  10K d10  Alex 12K [d10, d15) 
... ... ...  Alex 12K [d15, d18) 
John  10K d14  Alex 12K [d16, d20) 
Alex 12K d1     
... ... ...     
Alex 12K d19     

  (a)  (b) 

Figure 2 - Two valid time relations 



 SALARY 
Name Amount Time 

John 10K [ d1,   d5) 
John 10K [d10, d15) 
Alex 12K [ d1, d20) 

Figure 3 - A valid time relation 

2.2 Unfold. 

When a relation R is unfolded on attribute A i (denoted as UNFOLD [Ai] (R)), 
where the domain of Ai is of  a DATE or DATEINTERVAL type, each tuple (t1, ..., 
ti-1, ti, ti+1, ..., tn) of R is replaced in the resulting relation by a family of tuples ( t1, 
..., ti-1, tij, ti+1, ..., tn), where each tij is a date included in ti (as a trivial case, a date 
is considered to include only itself). For example, if SALARY is the relation in 
figure 3, then UNFOLD[Time] (SALARY) yields the relation in figure 2(a). An 
UNFOLD may apply to multiple columns; this is denoted by 
UNFOLD [Ai1, Ai2, ..., Ain] (R), and is equivalent to unfolding relation R on 
column Ai1, then on column Ai2 and so on up to column Ain. 

2.3 Normalise. 

The NORMALISE operation can be applied to multiple columns of type DATE or 
DATEINTERVAL. It is denoted by NORMALISE [Ai1, ..., Ain] (R), and is 
semantically equivalent to FOLD [A i1, ..., Ain] (UNFOLD [Ai1, ..., Ain] (R)). The 
NORMALISE operation is thus introduced for notational convenience. 

2.4 PUnion. 

The PUNION operation can be applied to two union-compatible relations and 
operates on multiple columns of type DATE or DATEINTERVAL. Two relations R 
and S are union-compatible if: 
1. The number of columns in R is the same as the number of columns in S and 
2. Column Ri is type-compatible with column Si, ∀ i. 
 The PUNION operation of two relations R and S is denoted by R PUNION 
[Ai1, ..., Ain] S and is equivalent to applying NORMALISE [Ai1, ..., Ain]  to the 
result of R UNION S. For example, if a relation S has a single tuple, 

(John, 10K, [d3, d12)) 

and SALARY is the table in figure 3, then the result of SALARY PUNION 
[Time] S consists of the two tuples 



(John, 10K, [d1, d15)) 
(Alex, 12K, [d1, d20)) 

2.5 PExcept. 

The PEXCEPT operation can be applied to two union-compatible relations and 
operate on multiple columns of type DATE or DATEINTERVAL. The PEXCEPT 
operation of two relations R and S is denoted by R PEXCEPT [A i1, ..., Ain] S and is 
equivalent to applying the FOLD [Ai1, ..., Ain] operation to the result of the  

UNFOLD [Ai1, ..., Ain] (R) EXCEPT UNFOLD [Ai1, ..., Ain] (S) 

operation. For example, if a relation S consists of the two tuples  

(John, 10K, [d10, d15)) 
(Alex, 12K, [d10, d15)) 

and SALARY is the table in figure 3, then SALARY PEXCEPT [Time] S consists 
of the tuples 

(John, 10K, [ d1,  d5))  
(Alex, 12K, [ d1, d10))  
(Alex, 12K, [d15, d20))  

 Tables which require the use of PUNION (PEXCEPT) for data insertion (deletion) 
rather than UNION (EXCEPT) are called normalised. 

3. VT-SQL syntax and semantics. 

The DDL statements of VT-SQL are the same as in SQL, except for the CREATE 
TABLE statement, which has been extended to allow for the specification of the 
primary key of  a valid time table (see section 3.2, below). In the following 
paragraphs, therefore, the syntax and semantics of the VT-SQL DML statements is 
presented. A complete presentation of the VT-SQL syntax and semantics, can be 
found in [5]. In the syntax, which follows, terms enclosed in brackets ([]) are 
optional; braces ({}) are used for items that may be repeated zero or more times; 
parentheses are used for grouping, and single quotes are used for parentheses which 
must be typed literally; capitals indicate reserved words and italics are used for 
user-provided values. 



3.1 The Select statement. 

The VT-SQL syntax for the SELECT statement is 

extended-select 
[(UNION | UNION ALL | EXCEPT) [ResultColumnList] 
[extended-select] 
[ORDER BY ResultColumn [ASC | DESC] 

{, ResultColumn [ASC | DESC]}] 

 The extended-select is defined as 

sql-select 
[REFORMAT AS [(FOLD | UNFOLD) columnList 

{(FOLD | UNFOLD) columnList}] 
[NORMALISE ON ResultColumnList] 

(Note than another version of UNFOLD, namely UNFOLD ALL, is also described 
in [9] but has been omitted here, for brevity reasons.) An extended-select is 
executed by evaluating its sql-select part, and then applying the 
REFORMAT/NORMALISE operations specified by the corresponding clauses. If the 
VT-SQL select statement includes a second extended-select, then the result of each 
of the two extended-select is computed, and a VT-RA operation is applied to them, 
in order to evaluate the final query outcome (this presumes that the schemata of the 
results of the two extended-selects are union-compatible). The UNION keyword 
specifies that either the VT-RA PUNION or the standard UNION operation should be 
applied, depending on whether the keyword UNION is followed by a column list or 
not, respectively. In the former case, the column list specifies the columns on which 
the PUNION operation will normalise the final result; these columns must be of type 
DATEINTERVAL or DATE. The ALL keyword may follow the UNION keyword, 
indicating that duplicate occurrences of result tuples should be retained. 
Analogously, the EXCEPT keyword specifies that either the PEXCEPT or EXCEPT 
operation must be applied, depending on whether the keyword is followed by a 
column list or not. Finally, the ORDER BY clause follows the SQL89 specification. 

3.2 The Insert statement. 

The syntax of the VT-SQL INSERT statement is identical with that of the SQL 
INSERT, except one case: If the tuples to be inserted are specified by a query, this 
query may be an extended-select. When data are inserted in a non-normalised 
table, the semantics of the INSERT statement are identical with the semantics of its 
SQL counterpart. If, however, the tuples are inserted into a normalised table, then 
an ordinary insertion takes place, followed by a NORMALISE operation on the 
appropriate columns. 
 The concept of the key of a table has been extended to normalised relations. 
Thus, the key of SALARY, in figure 3, is <Name, Time-p>. This means that 



SALARY may never contain two tuples, t1 and t2, which satisfy both (i) t1.Name = 
t2.Name and  (ii) t1.Time and  t2.Time are two dateintervals which have at least 
one date in common. We say that SALARY preserves the uniqueness of the 
primary key at a date level. 
 If the key of a normalised relation R has been defined and a piece of data, which 
is to be inserted, has already been recorded in R, then the transaction is aborted. 
For example, consider SALARY, in figure 3, with key <Name, Time-p>. If we 
issue the command 

INSERT INTO SALARY 
VALUES (’John’, 10K, ’[d4, d10)’) 

the insertion will fail, because John’s salary for date d4 is already in SALARY. 
This implementation convention is an extension of that in standard SQL.  

3.3 The Delete statement. 

A PORTION clause has been added to the DELETE statement, which may be used 
when deleting data from a normalised table. If the PORTION is present in a DELETE 
statement, it designates the valid time period to which the deletion applies. If the 
PORTION clause is not specified, the deletion applies to whole tuples. For  example, 
after the execution of the command  

DELETE FROM SALARY 
PORTION Time = ’[d3, d12)’ 
WHERE Name = ’John’ 

then SALARY, in figure 3, will consist of the tuples 

(John, 10K, [  d1,  d3))  
(John, 10K, [d12, d15))  
(Alex, 12K, [ d1, d20))  

3.4 The Update statement. 

When updating a non-normalised table, UPDATE behaves exactly as in SQL. If, 
however, the table is normalised, the update is followed by a NORMALISE operation 
on the appropriate columns. Analogously to the DELETE statement, the UPDATE of a 
normalised table may contain a PORTION clause, which specifies the valid time 
period to which the update is applied. For example, the command  



UPDATE SALARY 
PORTION Time = ’[d3, d5)’ 
SET Name = ’Tom’ 
WHERE Name = ’John’ 

will result in that SALARY, in figure 3, will consist of the tuples 

(John, 10K, [  d1,  d3))  
(John, 10K, [d10,  d15))  
(Tom, 10K, [ d3,  d5))  
(Alex, 12K, [ d1, d20))  

 Again, if the table preserves the uniqueness of the primary key at a date level, 
the transaction is aborted if the update may result in a table, which violates this 
uniqueness.  

4. Transaction support. 

Transaction support can be facilitated in a layered temporal RDBMS by having the 
temporal engine connected twice to the RDBMS, thus opening two sessions, the 
user session and the system session. User tables are always accessed (both for 
reading and writing) through the user session. The system session is used in order 
to issue to the RDBMS the DDL statements which create or drop the temporary 
tables, as well as the DML statements which insert or modify data in these tables. 
Data in the temporary tables can be read by both the user and the system session. 
 Different sessions to the RDBMS have independent commit modes, i.e. 
statements issued through a session do not affect the commit status of other 
sessions. Locking also takes place at session level, i.e. objects locked in shared or 
exclusive mode by one session are not available for update or access to other 
sessions, so care must be taken that the locking scheme does not lead to deadlocks. 
 In the following paragraphs, the usage of the two sessions, as well as the 
locking schemes employed, to provide full transaction support, are described in 
detail. 

4.1 The Select statement. 

Three cases are considered for the evaluation of the SELECT statement (for a 
complete description, see [3]): 
1. If the SELECT statement does not imply the application of operations not 

supported by the RDBMS (i.e. REFORMAT, NORMALISE, PUNION and PEXCEPT 
operations), the temporal engine opens a cursor through the user session, for the 
user query. The result tuples are fetched through this cursor and presented to 
the user. 

2. If the user query consists of only one extended-select then the following steps 
are taken: 



A. A temporary table is created through the system session, whose schema 
matches the schema of the table resulting from the sql-select. A cursor is 
opened through the user session for the sql-select part of the user query. 

B. The cursor opened in step (A) is used to fetch the result tuples, which are 
inserted into the temporary table through the system session. When all result 
tuples have been inserted into the temporary table, the system session 
commits, emptying its log space. 

C. The REFORMAT and NORMALISE clauses are executed from within the system 
session. As soon as each operation stated in each clause completes, the 
temporary table holding the results of the previous step is dropped through 
the system session, and the system session commits. 

D. The tuples contained in the final intermediate table are fetched through the 
system session, and forwarded to the user. When all data has been 
exhausted, the final intermediate table is dropped through the system 
session, and the system session commits. 

3. If the user query consists of two extended-select statements, combined by a 
UNION, EXCEPT, PUNION, PUNION ALL or PEXCEPT operation, then the 
following procedure is used: 
A. Steps (A)-(C) of case 2 are performed to evaluate each of the extended-select 

statements, storing the results in intermediate tables. 
B. The UNION, EXCEPT, PUNION, PUNION ALL or PEXCEPT operation is applied 

through the system session to the intermediate tables produced in step (A), 
and the results are stored in a temporary table. Upon operation completion, 
the intermediate tables produced in step (A) are dropped through the system 
session, and the system session commits. 

C. The tuples contained in the temporary table created in step (B) are fetched 
through the system session, and forwarded to the user. Finally, the 
temporary table is dropped through the system session, and the system 
session commits. 

 The execution procedure described above for the SELECT statement does not 
introduce any implicit commit points for the user session and does not expand the 
user session log file (only the system session's log is expanded, but only transiently, 
as it is truncated at the system session's commit points). Furthermore, since the user 
tables are handled by the user session and all temporary tables are accessed through 
the system session, no deadlock problems are introduced. 

4.2 The Insert statement. 

Insertions issued against non-normalised tables, can directly be forwarded for 
execution, through the user session, to the underlying RDBMS. The algorithm 
employed for data insertion in a normalised table R considers four distinct cases 
([10]), (i)-(iv), below.  In the sequel, the columns of any table R will be denoted as 
Rc1, Rc2, ..., RcN, Rvt, with Rvt being the column storing the valid time of the tuple. 
Columns not participating in the primary key -which includes all the columns from 
Rc1 through RcN if no primary key is defined on the table- will be denoted as RnonKey, 



and columns participating in the primary key -except for Rvt- will be referenced as 
Rkey. 
Case (i):  The values to be inserted are specified by means of the VALUES clause, 
and no primary key is defined on the table.  
 The temporal engine opens a cursor ins_cur on the target relation through the 
user session, selecting all tuples which are value equivalent to the insertion tuple 
(i.e. each column in RnonKey is equal to the corresponding column in the insertion 
tuple) and have overlapping or adjacent valid times. Each qualifying tuple is 
deleted from the target relation through cursor ins_cur (for which the fetched tuple 
is current), and the valid time of the insertion tuple is replaced by the union of its 
former value and the timestamp of the deleted tuple (the union of two adjacent or 
overlapping dateintervals is a dateinterval containing all time points in both 
arguments). Finally, the insertion tuple is appended to the target relation, through 
the user session. 
 In this case, all interaction with the RDBMS is performed through the user 
session, so no deadlock problems are introduced. Furthermore, changes to the 
database state are almost minimal, so log size increment is kept low (the minimum 
changes would be deleting all the selected value equivalent tuples except the last 
one, whose timestamp should be updated to the union of the timestamps of all the 
selected value equivalent tuples. However, cursors provide no indication whether 
the current tuple is the last or not, so this approach would require a second scan of 
the table, which would penalise the performance unacceptably). 
Case (ii): The values to be inserted are specified by means of the VALUES clause, 
and a primary key has been defined on the table .  
 The algorithm starts off with one insertion tuple, holding the values specified in 
the VALUES clause. A savepoint Save1 is created for the user session (the name of 
the savepoint is actually a unique, system-generated string), and a cursor ins_cur is 
opened on the target table, through the user session, selecting all tuples for which 
all the columns in Rkey have values equal to the values of the corresponding table in 
the insertion tuple, and their valid times are adjacent or overlapping to the 
timestamp of the insertion tuple. For each tuple that is fetched through the cursor, 
the following checks are made: 
1. If the valid time of the fetched tuple is overlapping with the valid time of the 

insertion tuple, then the INSERT statement violates primary key uniqueness. The 
user session is rolled back to the savepoint created at the beginning of the 
algorithm, by issuing a 

 ROLLBACK TO Save1 

 statement through the user session, and further processing is aborted. 
2. If all columns in RnonKey of the fetched tuple have values equal to the 

corresponding columns of the insertion tuple, then the fetched tuple is deleted 
from the target table, through cursor ins_cur, and the valid time of the insertion 
tuple is replaced by the union of its former value and the value of the fetched 
tuple's valid time. 



3. In all other cases, i.e. if any column in RnonKey of the fetched tuple is not equal to 
the corresponding column of the insertion tuple, the algorithm continues with 
the next tuple. 

 When no more tuples can be fetched through the cursor, the insertion tuple is 
appended to the table, through the user session. 
Remarks about locking problems and log size increment for the previous case (in 
which no primary key is defined), hold for this case too. 
Case (iii): The values to be inserted are specified by means of an extended-select 
query, and no primary key has been defined on the table. 
 The extended-select is evaluated as described in paragraph 4.1, and the result is 
stored in a temporary table (if the query can directly be supported by the RDBMS, a 
cursor is opened through the user session, fetching the result tuples, which are 
stored in a temporary table, through the system session; if the query consists of an 
SQL SELECT, followed by a REFORMAT and/or a NORMALISE clause, then only steps 
(A) to (C) are performed). The temporary table holding the results of the 
extended-select will be denoted as T1 (its name is actually a unique, system-
generated string). Subsequently, the temporal engine opens a cursor on table R 
through the user session, selecting all tuples which can be coalesced with any tuple 
in T1, i.e. tuples for which every column in RnonKey has value equal to the 
corresponding column in T1nonkey and the value of Rvt is overlapping or adjacent to 
the value of T1vt. Since tuple fetching through this cursor implies access to table T1, 
which will be dropped afterwards through the system session, it is important that 
this access does not place any locks on the tuples of T1. This is accomplished by 
issuing a statement 

SET LOCKMODE ON TABLE T1 WHERE READLOCK = NOLOCK; 

through the user session, prior to opening the cursor (this command is an INGRES 
extension to SQL89 ([11]); the syntax in other DBMSs may be different). Each 
qualifying tuple is fetched into memory, and deleted from the target table, through 
the user session, and subsequently inserted through the system session in table T1. 
Afterwards, the system session is used to perform a normalisation operation on 
table T1, each tuple of the FOLD operation's result is fetched into memory through 
the system session, and inserted into the target table through the user session. 
Finally, the temporary tables are dropped through the system session, and the 
system session commits. 
 This algorithm does not present deadlock problems, since when the user session 
accesses the temporary tables, created and altered through the system session, it 
does so without requiring or imposing any locks. During these accesses, the system 
session is quiescent, so no concurrency problems are introduced, due to absence of 
locks. Finally, the only changes made through the user session are the deletions of 
the tuples that can be coalesced with any of the insertion tuples, plus the actual 
insertion of the resulting tuples in the target table, keeping log size increment at 
reasonable levels. 



Case (iv): The values to be inserted are specified by means of an extended-select 
query, and a primary key has been defined on the table . 
 A savepoint is introduced for the user session, the extended-select is evaluated 
and the results are stored in a temporary table, as described for the previous case. 
Afterwards, the temporal engine renounces its locking rights for the user session on 
table T1 by issuing a statement 

SET LOCKMODE ON TABLE T1 WHERE READLOCK = NOLOCK; 

through the user session; the same session is used to open a cursor, on the join of 
the target table and T1, selecting those tuples for which all columns in RKey have 
values equal to the corresponding columns of table T1 and Rvt is overlapping or 
adjacent to T1vt. For each one of these tuples, all columns of table R, and columns 
in T1nonKey and T1vt are fetched into the main memory, and the following checks are 
made: 
1. If the values of Rvt and T1vt are overlapping, the insert operation is aborted, due 

to the presence of duplicate keys; the database is rolled back to the savepoint 
introduced at the beginning of the algorithm execution, and further processing 
is aborted. 

2. If the values of Rvt and T1vt are adjacent, and all columns in RnonKey have values 
equal to the corresponding columns in T1nonKey, the current tuple of the target 
table is deleted, through the user session, and subsequently inserted into T1, 
through the system session (the values are currently into the main memory, so 
they can be inserted immediately). 

3. In all other cases, the fetched tuple is ignored. 
 When this process completes, the system session commits, and a cursor is 
opened on table T1, through the system session, fetching all the fields of each row, 
sorted on columns T1key, T1vt, T1nonkey, in that order. The first row is fetched and 
marked as working tuple, and the algorithm proceeds as follows: 
1. The next tuple is fetched through the cursor. If data has been exhausted, 

working tuple is inserted into the target table through the user session and the 
algorithm continues with step (5), otherwise the fetched tuple is marked as 
current tuple, and the algorithm continues with step (2). 

2. If the value of any of the columns in T1key is different in working tuple and 
current tuple, or the values of T1vt in the two tuples are neither overlapping nor 
adjacent, then working tuple is inserted into the target table through the user 
session, current tuple replaces working tuple and step (1) is performed again. 

3. If the values of T1vt in working tuple and current tuple are overlapping, then the 
operation produces duplicate keys; the database is rolled back to the savepoint 
introduced at the beginning of the algorithm execution and further processing is 
aborted. 

4. If the value of any of the columns in T1nonKey is different in working tuple and 
current tuple, then working tuple is inserted into the target table through the 
user session and current tuple replaces working tuple; otherwise, T1vt in 
working tuple is replaced by the union of its former value and the value of T1vt 
in the current tuple and current tuple is discarded and control passes to step (1). 



5. Temporary tables are dropped through the system session and the system 
session commits. 

 The remarks made about the absence of deadlocks and log size increment for 
the previous case, hold for this case too. 

4.3 The Delete statement. 

If the PORTION clause is not specified in the DELETE statement, the request is 
directly forwarded to the underlying RDBMS for execution, through the user 
session. If, however, the PORTION clause is specified, the following actions are 
taken, in order to satisfy the user request: The temporal engine opens, through the 
user session, a cursor on the target table, selecting the rows matching the criteria 
stated in the WHERE clause and having valid times overlapping with the period 
specified in the PORTION clause (denoted as period, hereafter). For each selected 
tuple, the values of all fields along with the value of period are fetched into main 
memory, and one of the following actions is taken: 
1. If the value of period is a superinterval of the value of Rvt, then the tuple is 

deleted from the target table, through the user session. 
2. If the difference Rvt - period yields exactly one interval (i.e. the time points 

included in Rvt but not in period are consecutive and, consequently, can be 
represented by a single DATEINTERVAL value) then the value of Rvt of the 
current tuple is set to Rvt - period, through the user session. 

3. If the difference Rvt - period yields two intervals, diff1 and diff2, the value of Rvt 
of the current tuple is set to diff1, and a new tuple is appended to the target 
table, for which columns Rc1, ..., RcN are equal to the values of the 
corresponding columns in the current tuple, whereas the value of column Rvt is 
equal to diff2. Both the value change and the tuple insertion are performed 
through the user session. 

 Since the whole interaction is performed through the user session, the algorithm 
is deadlock free. The changes made to the database state are also kept to an 
absolute minimum, resulting in the minimum increment to the log size. 

4.4 The Update statement. 

If the UPDATE statement is applied to a non-normalised table, the UPDATE can 
directly be forwarded for execution to the underlying DBMS. If, however, the target 
table is normalised, then the following cases are considered: 
Case (i): The table has no primary key, and the PORTION clause is not specified. 
 The temporal engine opens a cursor on the target table, through the user 
session, selecting tuples qualifying with respect to the WHERE clause. For each 
selected tuple, the updated values of the fields changed by the SET clause, rather 
than the original values are fetched; the current tuple is deleted from the table, 
through the user session, and a tuple containing the updated values is stored in a 
temporary table, through the system session (the table will be denoted as 
update_temp and is created through the system session). When all qualifying tuples 
have been fetched, the system session commits, and the algorithm described for 



case (iii) in paragraph 4.2 is employed to insert the tuples in update_temp into the 
target table (obviously, the step involving the execution of the extended-select is 
not performed; table T1 mentioned in paragraph 4.2 is actually the update_temp 
table, produced in the previous step). 
 No deadlock problems are introduced through this algorithm, since the user 
session is used to access the user table, and subsequently a deadlock-free insertion 
algorithm is used. Log size increment is kept low, since every tuple update maps to 
one deletion and one insertion through the user session (actually, more deletions 
can performed, if some updated tuple can be coalesced with some tuple which is not 
updated). 
Case (ii): The table has no primary key and the PORTION clause is specified. 
 The temporal engine opens a cursor on the target table through the user session, 
selecting the tuples which qualify with respect to the WHERE clause and for which 
the value of Rvt overlaps with the value of the period specified in the PORTION 
clause. For each qualifying tuple, all the original values of the columns, the new 
values for the columns to be updated and the value of the period in the PORTION 
clause are fetched into main memory, the part of the tuple corresponding to the 
period specified in the PORTION clause expression is deleted from the target table 
(following the optimised algorithm of the DELETE statement), and a tuple is 
inserted through the system session into a temporary table update_temp (which will 
have been created through the system session). The values of the columns of this 
tuples are determined using the following algorithm: 
1. If the column appears on the left hand side of an assignment in the SET clause, 

then the value of the corresponding right hand side expression is used. 
2. If the column is not updated, then its original value is used, except for column 

Rvt, for which the value of the expression appearing in the PORTION clause is 
used. 

 When all qualifying rows have been dealt with, the rows in update_temp are 
inserted in the target table using the algorithm described in paragraph 4.2 for case 
(iii). (The step of evaluating the extended-select is skipped and update_temp 
replaces T1.) 
 Remarks made on the absence of deadlocks for the previous case, hold for this 
case too. Log size increment is also kept low, with every update mapping to either 
one tuple deletion and one insertion, or one update and one insertion or one update 
and two insertions, depending on the portion of the tuple which will be updated. 
Case (iii): The table has a primary key and the PORTION clause is not specified. 
 The algorithm employed for case (i) can be used here, modified so that a 
savepoint is introduced for the user session at the begining of the operation, and the 
resulting tuples are inserted into the target table using the algorithm for inserting 
data in a table for which a key is defined (case (iv) of the INSERT statement, with 
the necessary amendments: The step of evaluating the extended-select is skipped, 
update_temp replaces T1 and the savepoint introduced at the start of the operation 
is used when the database should be rolled back due to primary key uniqueness 
violation). Remarks on the absence of deadlocks and log size increment for case (i) 
hold for this case too. 
Case (iv): the table has a primary key and the PORTION clause is specified. 



 The algorithm described for case (ii) can be used for this case, modified so that 
a savepoint is introduced for the user session at the begining of the operation, and 
the resulting tuples are inserted in the target table using the algorithm for inserting 
data in a table for which a key is defined (case (iv) of the INSERT statement, with 
the necessary amendments). Remarks on the absence of deadlocks and log size 
increment for case (ii) hold for this case too. 

5. Protection and crash recovery. 

This section presents techniques for dealing with protection and crash recovery 
issues, arrising from the algorithms presented in section 4. A protection scheme 
which prevents ad-hoc modification of temporary tables is presented in section 5.1, 
and an algorithm for removing temporary tables which remained in the database 
because of a system crash is described in section 5.2. 

5.1 Protection scheme for temporary tables. 

The correctness of data contained in temporary tables is a crucial point for the 
successful completion of the operations described in the previous sections. Thus, it 
is important to prevent users from modifying the contents of temporary tables. User 
access to these tables must also be avoided, as locks may be placed, which can lead 
to substantial delays (e.g. the system session will have to wait until these locks are 
released, before dropping the table) or even deadlocks. 
 In general, the life span of temporary tables is limited and, actually, users 
ignore the names of temporary tables, so the probability of user access is limited. 
However, it is possible that during the evaluation of a complex query or in a period 
of increased system load, some user acquires information about the name of a 
temporary table (by querying an RDBMS system catalogue) and access it or 
modifies it, by issuing a query. Temporary tables can be protected from 
unauthorised access using the following techniques: 
1. A special user id, e.g. temporal, is created in the RDBMS, and the CREATE 

TABLE privilege is granted to this user id for every database handled by the 
RDBMS. The system session is opened under this special user id, using the 
IDENTIFIED BY clause of the embedded SQL connect statement. 

2. If a temporary table must be accessed through the user session, this access is 
preceded by the command sequence 

 GRANT SELECT ON TempTable TO UserName 
 COMMIT 
 LOCK TABLE TempTable IN EXCLUSIVE MODE 

 which is issued through the system session. (If a LOCK TABLE statement is 
not available, the same effect can be accomplished by setting the locking 
granularity of the system session to table level, its read access locking mode to 
exclusive and accessing a single tuple of the temporary table through it). 



TempTable is the name of the temporary table which must be accessed by the 
user session, and UserName is the user id under which the user session is 
opened. The SELECT privilege is revoked as soon as the user session completes 
the necessary access, by issuing the statements 

 REVOKE SELECT ON TempTable FROM UserName 
 COMMIT 

 through the system session. 
3. After each COMMIT point of the system session, all existent temporary tables, on 

which the SELECT privilege is granted, are locked in exclusive mode. 
 Using a different user id for the system session protects the temporary tables 
from unauthorised modifications, since none of the INSERT, DELETE and UPDATE 
privileges are granted by default to user ids different than the table creator. Read 
access to the temporary tables is limited to the period during which it is absolutely 
necessary and, when it is permitted, the table is locked in exclusive mode by the 
system session. Thus, this access has to be done in the "no lock" fashion employed 
by the user session, which eliminates any delay or deadlock possibility. 

5.2 Removing remnant temporary tables. 

It is possible that, during the execution of a query, requiring the creation of 
intermediate tables, either some temporal engine, or the RDBMS, or the computer 
system, on which any of these programs are executed, crashes. Since the system 
session commits its results with temporary tables present in the database, the 
RDBMS considers these tables permanent and will try to preserve them through 
system crashes. Therefore, a method must be provided, to remove these tables from 
the database. One of the following two approaches can be followed: 
1. A naming convention can be adopted for the temporary tables, e.g. their name 

should always start with the string tt_temp. When the RDBMS recovers from 
a crash, a program can be invoked by the database administrator, which drops 
all tables whose name starts with this specified string (the names can be 
determined by querying the RDBMS system catalogues). Users should be 
warned about this policy, so they will not create a table which might be removed 
by this procedure. 

2. A special table can be introduced, which can be used by the temporal engine to 
store the names of the temporary tables currently present in the database. A 
temporary table should then be registered in this catalogue before the CREATE 
TABLE statement, which creates this temporary table, is issued to the RDBMS. 
The registration should be removed only after the corresponding DROP TABLE 
statement has been issued (data insertion and deletion in the catalogue is 
performed through the system session). Upon crash recovery, a program is 
invoked, which removes from the database all tables registered in this 
catalogue. 



6. Conclusions - future work. 

In this paper, we presented techniques for supporting transactions in a layered 
temporal DBMS. The techniques presented exploits the transaction support features 
of the underlying RDBMS, using a second connection to it, through which 
operations on temporary tables are performed. Care is also taken, so that no 
deadlock problems are introduced, as locking is done at session level. 
 Future work includes support for multiple interval granularities, multiple valid 
time dimensions, transaction support as well as multi-user extensions. 
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