
- 1 -

Implementing Embedded Valid Time Query Languages

Abstract: Application development on top of database systems is heavily based on

the existence of embedded and 4GL languages. However, the issue of designing

and implementing embedded or 4GL temporal languages has not been addressed

insofar. In this paper, we present a design approach for implementing an embedded

temporal language that supports valid time. Furthermore, we introduce

implementation techniques that can be used for implementing any embedded

temporal language that supports valid time on top of a DBMS.

1. Introduction
In the past years temporal databases have received substantial research attention, and

numerous application areas which would benefit from the introduction of the time dimension

have been identified (e.g. [2], [5], [6], [7]). However, little has been reported on the

implementation of temporal applications using the temporal database management systems

(TDBMSs) implemented, with the exception of time series-oriented applications: in [8] an

application for managing medical temporal data is presented, while [16] reports on a temporal

application which was developed for Clinica Puerto de Hierro of Spain. One of the main

reasons for this shortage, is the absence of suitable development tools: database application

development is based on embedded and 4GL languages (usually complemented by graphical

user interface libraries), and none of the temporal database systems implemented insofar ([3])

is reported to provide such tools. Some of these systems provide graphical user interfaces ([4],

[8], [19]), but these interfaces are oriented towards assisting query formulation, and not

targeted for general-purpose application development. TSQL2 ([22]) includes specifications

for cursors, but no implementations for TSQL2 cursors has been reported insofar. Time series

applications, on the other hand, can be easily developed since there do exist database systems

whose development packages support the time series concept ([15], [17]). This paper presents

a design approach to the implementation of an embedded temporal language for a TDBMS

supporting valid time (VTDBMS). We will not focus on a specific temporal language but,

- 2 -

rather, we will identify categories of statements that appear in VTDBMSs, and outline

algorithms for handling such statements. The design is based on the following assumptions:

• The non-temporal part of the valid time query language (denoted as VTQL, hereafter) is

pure SQL, or can be mapped to it. For simplicity, in our discussion we will assume that the

non-temporal part is pure SQL.

• A terminal monitor application that accepts and processes interactive VTQL statements

has been developed. The terminal monitor uses certain algorithms to evaluate queries with

temporal aspects. The design of embedded VTQL (denoted as VTQL, hereafter) does not

rely on the existence of specific algorithms, but requires that such algorithms do exist.

• EVTQL will be implemented on top of a DBMS that supports embedded SQL. This

implies that a layered architecture is adopted, as suggested in [20], [21] and [23].

Finally, for simplicity in our discussion, we will assume that homogeneous valid time and tuple

timestamping ([13]) is used, although the techniques presented here may easily be adapted to

handle heterogeneous valid time and attribute timestamping.

The remnant of this paper is organised as follows: section 2 outlines the syntax and semantics

of EVTQL, and the categories of statements that may appear in a VTDBMS are identified.

Section 3 presents a design approach to the implementation of EVTQL, discussing the

software modules that compose it, the role of each module and the algorithms it employs.

Although the design has been completed for both static and dynamic EVTQL statements, only

static statements are presented in this paper, for brevity reasons. Section 4 concludes and

outlines future work.

2. An Embedded Valid Time Query Language
EVTQL should obey the dual-mode principle ([10]), i.e. every VTQL statement that can be

used interactively, may be executed as part of an application program. Embedded VTQL

statements, however, may use a number of extensions not available to interactive statements

(the prefix EXEC VTQL that is used to distinguish embedded VTQL statements from host

language statements is a trivial issue, and will not be addressed in the rest of this document):

- 3 -

1. embedded VTQL statements may contain references to host language variables, which must

be prefixed with a colon (:). Variable references may appear in any place of a VTQL DML

statement that a literal can be used, and in the INTO clause.

2. the embedded SELECT statement is augmented with an INTO clause, which specifies the

host variables into which data will be retrieved.

3. a number of statements (or statement forms) associated with cursors is available (DECLARE

CURSOR, OPEN, FETCH, etc.), providing a row-at-a-time interface to the database.

In the remainder of section 2 EVTQL DML statements will be presented. DDL statements are

not discussed, since their syntax and semantics is identical to their interactive VTQL

counterparts. The CONNECT, DISCONNECT and BEGIN/END DECLARE SECTION

statements are also excluded from the discussion, since they are identical to their embedded

SQL counterparts ([9]). Each of the SELECT, INSERT, DELETE and UPDATE statements

are subdivided into two categories, which will be used in the discussion in section 3:

• Snapshot-transformable statements. This category includes VTQL statements that can be

mapped to a single SQL statement. Statements that include operations on data types

representing time may fall in this category, even if the underlying DBMS does not directly

support these operations: indeed, for a DBMS not supporting the TSQL2 PRECEDES

predicate, the expression instant1 PRECEDES instant2 may be rewritten as

instant1 < instant2 or even precedes(instant1, instant2) , if the

underlying DBMS implements the precedes predicate as an operator or a function,

respectively.

• Non snapshot-transformable statements. This category includes VTQL statements that

require the application of a set operation not directly supported by the underlying DBMS.

Such operators are coalescing operators ([13]), operators converting between instant and

period timestamping, as well as the SL and SPp operators introduced in [22] (chapter 27).

If data are stored in the base tables in coalesced form, INSERT, DELETE and UPDATE

statements against valid time tables always fall in this category.

- 4 -

2.1 Operations not involving cursors

The DML statements of VTQL that do not involve cursors are the “singleton” form of

SELECT, the INSERT statement, and the DELETE and UPDATE statements, except for their

the WHERE CURRENT OF forms, which will be presented later. These statements are

described in the following paragraphs.

2.1.1 The SELECT Statement (“singleton” form)

The “singleton” form of the embedded VTQL SELECT statement is used to fetch at most one

tuple from the database. Its syntax is identical to the interactive counterpart, except that the

INTO clause may precede the FROM clause, specifying the host language variables into which

the query results will be stored. For example the TSQL2 ([22]) query
SELECT Name
INTO :emp_name
FROM Employee E1
WHERE VALID(E1) CONTAINS PERIOD(DATE ‘01/01/1991’, DATE ‘12/31/1991’);

can be used to fetch the name of the employee that has worked during all of 1991 (assuming

that only one such employee exists).

2.1.2 The INSERT Statement

The syntax of the EVTQL INSERT statement is identical to the corresponding statement of

SQL, with two exceptions:

1. If the values to be inserted are specified via a select-query, the query may include temporal

features.

2. If the column storing the tuple’s valid time is implicit (as in TSQL2), a specific clause

must be introduced to specify the tuple’s valid time, when inserting data into a valid time

clause using the values clause.

2.1.3 The DELETE and Update Statements (non-Cursor Forms)

The DELETE and UPDATE statements of embedded VTQL are used to delete and update either

whole tuples, or specific periods of the valid time data stored in a table. The syntax of the

embedded VTQL DELETE and UPDATE statements is identical to their SQL counterparts, with

the following exceptions:

1. The WHERE clause in both statements may use temporal extensions.

- 5 -

2. When deleting or updating valid time tables, the valid time period to which the operation

applies must be specified. If the column storing the tuple’s valid time is implicit, special

provision for modifying the tuple’s valid time must also be included.

2.2 Operations involving cursors

Cursors provide a row-at-a-time interface to the database. Using cursors, an application may

obtain addressability to tuples stored in the database (one tuple at a time), fetch data values

into its address space, as well as delete or modify the tuples.

Before any cursor is used, it must be declared, i.e. associated with a VTQL SELECT

statement. The syntax for cursor declaration is
EXEC VTQL DECLARE cursor_name CURSOR FOR VTQL-Select-Statement;

Cursor declaration does not trigger the evaluation of the associated query. The query is

evaluated only when the cursor is opened, which is accomplished via the statement
EXEC VTQL OPEN cursor_name;

Upon opening, a cursor does not point to any tuple in the result set. In order to position the

cursor to the next tuple (marking it as the current tuple of the cursor) and fetch the values of

the selected attributes into host language variables, the statement
EXEC VTQL FETCH cursor_name INTO host-variable-list;

must be used. If no more data is available in the result set to be fetched, the vtqlca.vtqlcode

variable (which is implicitly declared in all programs using embedded VTQL) is assigned a

special value to indicate the error. Finally, a cursor may be closed using the statement
EXEC VTQL CLOSE cursor_name;

Two issues are worth noting here, with respect to TSQL2:

1. TSQL2 introduces nested cursors for valid time tables. Outer-level cursors provide

addressability to explicit attributes; the inner level cursors provide access to the valid

timestamps of the tuple, while the outer level cursor points to a specific tuple. In a

relational environment, this implies that valid timestamps are stored in a different table,

necessitating thus the need for joins in query processing. Since such a scheme is inefficient

to implement in a relational environment, we will not consider nested cursors; instead,

standard single-level cursors provide access both to the explicit attributes and the valid

time of the tuple.

- 6 -

2. The cursor versions of the DELETE and UPDATE statements in TSQL2 apply only to

complete tuples; the design presented in this paper provides with means to specify that the

operation applies only to a specific part of the valid time of the tuple that is pointed to by

the cursor.

2.2.1 The DELETE Statement (Cursor Version)

The syntax of the cursor version of the DELETE statement is
DELETE FROM table_name WHERE CURRENT OF cursor_name [VT_selection];

where VT_selection is a syntactic construct (probably a clause, such as the VALID clause in

the non-cursor form of TSQL2’s DELETE statement), specifying the valid time period to

which the deletion applies. There is no particular reason why this syntactic construct should be

placed last in the query: it may be positioned in any place, provided it does not introduce

syntactic ambiguities.

If VT_selection is used, the cursor does not point to a current tuple after the UPDATE

statement is executed, and thus is not qualified for further deletions and updates, until a new

FETCH statement is executed for that cursor. If this specification is omitted, the deletion

applies to the whole tuple that is current for the designated cursor.

The cursor version of the DELETE statement may be used only if the cursor points to an

updatable result tuple set. The cases for which a result tuple set is updatable practically

depend on the underlying DBMS ([12], [14], [18]). The SQL standard ([9]) specifies a

minimal set of queries yielding updatable results (roughly, this includes queries which apply

only SELECT and PROJECT relational algebra operations, with no duplicates removal, on a

single base table; joins are permitted but only when expressed via a subquery), but various

RDBMSs allow updates on the results of a wider range of queries. We will consider updatable

only the result sets which are designated as updatable by the SQL standard. The usage of the

coalescing operators, operators converting between period and instant timestamping as well as

the SL and SPp operators destroys the physical one-to-one mapping of result tuples to stored

tuples (i.e. a tuple in the result set does not correspond to a single stored tuple), and thus

renders the result set not updatable.

- 7 -

2.2.2 The UPDATE Statement (Cursor Version)

The syntax of the cursor version of the UPDATE statement is
UPDATE table_name SET col = value {, col = value}
WHERE CURRENT OF cursor_name [VT_selection];

When using this form of the UPDATE statement (which is permitted only if the cursor points to

an updatable result tuple set), the update applies to the tuple that is current for cursor

cursor_name. Again, VT_selection specifies the valid time period to which the operation

applies. If VT_selection is used, the cursor does not point to a current tuple after the UPDATE

statement is executed, and thus is not qualified for further deletions and updates, until a new

FETCH statement is executed for that cursor.

3. Design of an EVTQL Architecture
In this section we describe the design of an architecture for the embedded VTQL language,

which may be implemented on top of any relational DBMS. The proposed architecture follows

the approach taken by embedded SQL packages, but introduces two additional modules, the

EVTQL preprocessor and the EVTQL library. The application programmer develops the

temporal application in some host language (e.g. C, C++ etc.), using embedded VTQL

statements to interact with the database. Each file written by the programmer is then processed

by the EVTQL preprocessor, which translates EVTQL statements to calls to the EVTQL

library. Calls to the EVTQL library may need to be supported by data structures and/or

embedded SQL statements, thus the output of the EVTQL preprocessor is an intermediate file

conferment to the embedded SQL syntax rules. These intermediate files are fed to the

DBMS’s embedded SQL preprocessor, whose output is processed by the host language

compiler, producing object files. Finally, object files are linked with the host language’s

libraries, the DBMS libraries, the EVTQL library and any other libraries specified by the

programmer (e.g. GUI libraries), in order to produce the application executable file.

The EVTQL library is a collection of procedures, providing support for the execution of

EVTQL statements and for temporal cursors. It is developed in some host language, and uses

embedded SQL to interact with the database. The files containing the EVTQL library’s source

code are processed by the DBMS’s embedded SQL preprocessor and are then compiled to

- 8 -

object files, using the host language compiler. Finally, the system library manager is used to

bundle these object files into a single library file. Only this library file is needed in the linking

phase of temporal applications.

Figure 1 illustrates the overall process of temporal application development, using embedded

VTQL.

Embedded
VTQL Files

Embedded VTQL
Preprocessor

Host Language
Files

Host Language
Compiler

010011

Embedded SQL
Files

Embedded SQL
Preprocessor

Host Language
 Files

EVTQL Library
Object Files

System Library
Manager

Host Language
Compiler

010011

Embedded SQL
Preprocessor

Temporal
Application
Executable

System Linker

Application
Object Files

EVTQL Library

Temporal
cursors
VTQL

DBMS Library

SQL

Cursors

Host Language
Libraries

(optional) GUI Libraries

intermediate
files

Figure 1 - Embedded VTQL architecture

In the following paragraphs, the operation of the EVTQL preprocessor and the algorithms

employed by the EVTQL library are presented.

3.1 The EVTQL Preprocessor

The EVTQL preprocessor operates on files containing host language statements and

embedded VTQL statements. For each input file, the embedded VTQL preprocessor generates

an output file, which contains host language, embedded SQL statements and calls to the

EVTQL library, and is then processed by the DBMS’s embedded SQL preprocessor and the

host language compiler, to produce object files. More specifically, the embedded VTQL

preprocessor is responsible for the following actions:

1. analyse syntactically the embedded VTQL statements, verifying that they conform to the

EVTQL syntax rules.

- 9 -

2. determine the types of the host language variables which are used within embedded VTQL

statements, so as to facilitate information exchange between the VTDBMS and the

application program.

3. translate embedded VTQL statements to appropriate calls to the EVTQL library. Each call

must be supplied with parameters, which provide adequate information for the statement

execution. Some statements need additional data structures and/or code to be introduced;

the EVTQL preprocessor is responsible for planting these data structures and the

appropriate pieces of code into the output file.

4. insert pieces of code to implement the WHENEVER statements1.

In order to perform these tasks, the EVTQL preprocessor must be aware of the host language

syntax and semantics rules, so as to tailor its behaviour to the specific host language (type

analysis of variable declarations, code emission etc). In this paper, we focus on the EVTQL

preprocessor for the “C” language, since C (along with C++) is the dominant third generation

language for application development. The techniques presented, however, can be used for

implementing preprocessors for other host languages. Since statement parsing is covered in

detail elsewhere (e.g. [1], [11]), we focus only on the VTQL-specific aspects of the

preprocessor, i.e. the translation of embedded VTQL statements and the implementation of the

WHENEVER statements.

3.1.1 Embedded VTQL statement translation

A. The SELECT statement (“singleton” form)

The EVTQL preprocessor translates each singleton SELECT statement to a call to the EVTQL

library function evtql_select . The function is supplied with two arguments, the second

one being a description of the variables listed in the INTO clause. For each variable, its type,

its length in bytes and a pointer to the memory location where the variable is stored are

included in the description. If the INTO clause is omitted, a special value is used for the second

argument. Effectively, in this case, no data is retrieved into the program’s address space, but

the program can still examine the status returned in the vtqlca.vtqlcode variable, which may

1 Analogous to the embedded SQL WHENEVER statements.

- 10 -

indicate that the statement was successfully executed, that no qualifying tuples were found or

that an error occurred.

The first argument of the evtql_select function is a structure describing the SELECT

statement, together with the host language variables that are used in the statement (except the

ones used in the INTO clause). Each field of the structure corresponds (roughly) to a clause of

the SELECT statement. If a clause contains a comma-separated list of values (such as the

select list or the FROM clause), an array is used to represent the clause within the structure, and

each slot of the array is filled with the appropriate value. This arrangement eliminates the need

for parsing during run time. For each expression in which host language variables may be used

(i.e. the expressions in the SELECT list, the WHERE clause and the HAVING clause), a

supplemental array is provided, containing variable descriptions and pointers indicating the

offset, within the expression, where the host language variable must be inserted. This

translation is demonstrated in Figure 22:
/* EXEC VTQL SELECT EmpName, Salary, Period INTO :name, :salary, :period
FROM Employees E1 WHERE EmpId = :empid and BEGIN(VALID(E1)) = :targetDate; */
static evtql_select_struct vtql_sel_001 = {
{

/* Number of items in select list plus a description for each item. Since no host
variables are used here, the corresponding lists are empty. */
{3, {{"EmpName", {0}}, {"Salary", {0}}, {"Period", {0}}},
/* The FROM clause */
{1, {"Employee", "E1"}},
/* The WHERE clause, including the description of the two host variables. Each description
contains the offset within the string, where the variable value must be inserted. Notice
the translation of VALID(E1) to E1.VT. */
{"EmpId = and BEGIN(E1.VT) = ",

{2, {VTQL_CHAR, 5, NULL, 8}, {VTQL_DATE, 10, NULL, 29}}}
};
/* Structure describing the INTO clause. */
static evtql_varlist vtql_varlist_001 = {
3, {{VTQL_CHAR, 20, NULL}, {VTQL_INT, 4, NULL}, {VTQL_INTERVAL, 25, NULL}}
};
/* data structure initialisation */
vtql_sel_001.where.vars[0].ptr = empid;
vtql_sel_001.where.vars[2].ptr = targetdate; vtsl_varlist_001.vars[0].ptr = name;
vtql_varlist_001.vars[1].ptr = &salary; vtql_varlist_001.vars[2].ptr = period;
/* call to the library */
evtql_select(&vtql_sel_001, &vtql_varlist_001);

Figure 2 - Translation of a singleton SELECT statement

The first comment in Figure 2 shows the original EVTQL statement. The following two

declarations are generated by the EVTQL preprocessor and are inserted at the beginning of

the output file, whereas the executable statements that follow are inserted at the place where

the embedded VTQL statement was located in the original file. The first group of statements

2 A number of fields which are not used in the example is omitted (e.g. the field describing the GROUP BY
clause) for brevity reasons, but they are actually emitted by the preprocessor. Additionally, arrays are initialised
in separate declarations, but in this example their initialisation is merged with the declaration of the data
structure which includes them.

- 11 -

fixes the pointers to the host variables, which are contained in the data structures. Data

structure declaration cannot include pointer initialisation, because host variables may be either

local or global, and data structures are declared at global level. Declaring the data structures at

global level is required, since the declarations include initialisations, and many compilers reject

such declarations at local (function) level. Additionally, using global declarations avoids

unnecessary initialisation upon every entry to the function. Data structures are declared with

static storage class, to avoid clashes with variables in other preprocessed files.

B. The INSERT, DELETE and UPDATE statements

Data insertion and the non-cursor forms of the DELETE and UPDATE statements are handled

by calls to EVTQL library functions. Data deletion and update is performed by the

evtql_delete and evtql_update functions, respectively, whereas for data insertion, one

of the functions evtql_insert_values and evtql_insert_query is called, depending

on whether the data to be inserted are specified via the VALUES clause or a query. In all cases,

data structures formulation follows the rules described for the SELECT statement. Each

function call is supplied with parameters that describe the requested operation.

C. The DECLARE CURSOR statement

The DECLARE CURSOR statement is not directly translated to a call to the EVTQL library.

The preprocessor memorises the cursor name and the associated SELECT statement, and this

data are used when the corresponding OPEN statement is processed. At this point, however,

the SELECT statement is syntactically analysed, errors (if any) are reported and appropriate

data structures are formulated in the preprocessor’s memory.

To each cursor that is declared in a source file, the EVTQL preprocessor assigns a DBMS

statement name and a DBMS cursor name (these are unique, system-generated identifiers).

Additionally, for each declared cursor the preprocessor generates four functions, which are

appended to the output file. The first function is named evtql_open_CName (CName is the

name of the VTQL cursor) and contains the following embedded SQL statements:
EXEC SQL PREPARE dbms_statement FROM :host_string;
EXEC SQL DECLARE dbms_cursor CURSOR FOR dbms_statement;
EXEC SQL OPEN dbms_cursor;

- 12 -

(dbms_cursor and dbms_statement are the DBMS cursor name and statement name which are

assigned to the cursor by the EVTQL preprocessor; host_string is a parameter passed to the

function.) This function is called by the evtql_open_cursor EVTQL library function

(presented later) to open the DBMS cursor, because embedded SQL packages do not allow

cursor declarations via dynamic statements, or declarations in which the cursor name is stored

in a host language variable.

The following two functions, namely evtql_fetch_CName and evtql_close_CName , are

generated for analogous reasons. evtql_fetch_CName contains the embedded SQL

statement
EXEC SQL FETCH dbms_cursor INTO :descriptor;

where descriptor is a parameter of type DBMS_descriptor, which is passed to the function.

Function evtql_fetch_CName is called by the evtql_fetch and

evtql_fetch_descriptor EVTQL library functions, when data fetching through the

VTQL cursor is required. The evtql_close_CName function contains the embedded SQL

statement
EXEC SQL CLOSE dbms_cursor;

and is called by the evtql_close_cursor EVTQL library function.

The fourth function generated for each declared cursor is named evtql_exec_CName , and

contains the embedded SQL statement
EXEC SQL EXECUTE IMMEDIATE :cursor_statement;

This function is called whenever deletions or updates must be performed through the RDBMS

cursor and is used because some DBMSs (e.g. Ingres [12]) require that all operations through

a cursor must be performed from within the file that the cursor has been declared.

cursor_statement is a dynamically formulated SQL statement (by some function in the EVTQL

library), which is passed as a parameter to the evtql_exec_CName function.

In order to maintain the association between the EVTQL cursor name and the elements

constructed by the EVTQL preprocessor (the DBMS statement name, the DBMS cursor name

and the four functions) during run-time, the EVTQL preprocessor must be invoked in a special

mode. When the EVTQL preprocessor operates in this mode, it processes all embedded

VTQL source files compiles in a separate file a table of cursors, which is a host language array

- 13 -

of records, containing an entry for every declared cursor. Each entry contains the EVTQL

cursor name, the DBMS cursor and statement names, plus pointers to the four preprocessor-

generated functions. This file must be processed by the host language compiler to produce an

object file, which should be linked into the temporal application executable file.

D. The OPEN statement

The OPEN statement prepares a cursor so that it can be used for data fetching. It is translated

by the EVTQL preprocessor to a call to the evtql_open_cursor EVTQL library function.

The function accepts two arguments, the first one being the name of the cursor, whereas the

second argument is a structure describing the SELECT statement. If the SELECT statement

includes references to host language variables, then appropriate assignment statements are

inserted before the call to the EVTQL library function, so as to adjust the pointers to these

variables.

E. The FETCH statement

The EVTQL FETCH statement is translated by the preprocessor to a call to the

evtql_fetch EVTQL library function. The function is supplied with two parameters, the

first one being the cursor name, whereas the second parameter is an array of host language

variable descriptors. Each descriptor contains the type and the size of each variable, and a slot

for the pointer to the actual memory location of the variable. This slot is filled by assignment

statements which are inserted by the preprocessor, before the call to the evtql_fetch

EVTQL library function.

F. The DELETE statement (cursor form)

The cursor form of the EVTQL DELETE statement is translated by the EVTQL preprocessor

to a call to the evtql_delete_cur library function. The function is supplied with three

parameters, the first two being the cursor name and the name of the target table, respectively.

The third parameter describes the VT_selection, and its structure is identical to the respective

parameter used in the non-cursor form of the DELETE statement. If the VT_selection syntactic

construct is specified and the right hand side expression of the assignment contains references

- 14 -

to host language variables, then appropriate assignment statements are inserted before the call

to the EVTQL library function, so as to adjust the pointers to these variables.

G. The UPDATE statement (cursor form)

The cursor form of the EVTQL UPDATE statement is translated by the EVTQL preprocessor

to a call to the evtql_update_cur library function. Four parameters are passed to the

library function, the first two being the name of the cursor, the name of the table to be

updated, respectively. The third and fourth parameters describe the VT_selection syntactic

construct and SET clause, respectively. If these clauses contain references to host variables,

then appropriate assignment statements are emitted by the preprocessor, in order to adjust the

pointers to the variables.

H. The CLOSE statement

The CLOSE statement is translated by the preprocessor to a call to the VTQL library function

evtql_close_cursor , which is provided with a single parameter, designating the name of

the cursor to be closed.

3.1.2 Implementing the WHENEVER statements

The WHENEVER statement may be used in an embedded VTQL program to simplify the

database error handling process. The EVTQL preprocessor supports three flavours of the

WHENEVER statement, which may be used to specify the action to be taken in the event of an

error (VTQLERROR), a warning (VTQLWARNING) or when a select statement could not return

any data (NOT FOUND). If a source file contains WHENEVER statements, then the VTQL

preprocessor automatically inserts after the code implementing each translated statement

appropriate host language statements which test the value of the vtqlca.vtqlcode variable and

perform the designated action as needed. This procedure is illustrated in Figure 3.
/* EXEC VTQL WHENEVER VTSQLERROR GOTO error_handler; */
/* EXEC VTQL WHENEVER VTSQLWARNING CONTINUE; */
/* EXEC VTQL WHENEVER NOT FOUND PERFORM no_more_data_dialog; */

/* EXEC VTQL SELECT Name, Salary INTO :name, :salary FROM employee; */
evtql_select(...);
if (vtqlca.vtqlcode < 0) /* VTQLERROR */

goto error_handler;
/* Since the "continue" action is specified for the VTQLWARNING
event, no tests are performed for this event class */
if (vtqlca.vtqlcode == VTQL_NO_MORE_DATA) /* NOT FOUND */

no_more_data_dialog();
Figure 3 - Implementation of the WHENEVER statements

- 15 -

3.2 The EVTQL Library

The EVTQL library is a collection of procedures which implement the embedded VTQL

statements. In the following paragraphs, the algorithms employed by these procedures to

perform the requested operations, are described. For brevity reasons, details of reporting the

status of the operations’ execution to the application are not discussed; this is always done by

means of the vtqlca.vtqlcode status variable, which the procedures set to 0, for successful

completion, or to a non-zero value, to indicate an error.

3.2.1 The SELECT statement (“singleton” form)

The singleton selection operation is performed via the evtql_select library procedure,

which accepts two arguments, the first one describing the SELECT statement, whereas the

second argument describes the variable list into which the values will be fetched. The

evtql_select library procedure processes the request using the following algorithm:

1. If the SELECT statement is snapshot-transformable (see page 3), the evtql_select

library procedure reconstructs the original select statement and prepares a descriptor (a

DBMS-specific data structure) which is actually a list of variable descriptions (type, size

and memory address). The prepared descriptor contains one entry for each variable that

appears in the original INTO clause. The data pointer of each entry is set to the memory

location of the host language variable, so that the data will be directly placed into the

desired memory area, with no additional data copying. The reconstructed SELECT

statement is executed and the variables are fetched into the host language variables using

the following embedded SQL statement:
EXEC SQL PREPARE dbms_stmt FROM :stmt;
EXEC SQL DECLARE tmp_cursor CURSOR FOR dbms_stmt;
EXEC SQL OPEN tmp_cursor;
EXEC SQL FETCH tmp_cursor USING DESCRIPTOR : d1;
EXEC SQL EXECUTE IMMEDIATE :stmt USING DESCRIPTOR :d1;

where the host variable stmt contains the reconstructed statement and d1 is the prepared

descriptor.

2. If the query is not snapshot-transformable, the EVTQL library uses the algorithms

employed by the terminal monitor application to evaluate the query. Results, however, are

not output to the screen, but stored in a temporary table tmp_table. Finally, the batch of

- 16 -

embedded SQL statements described in case (1) is executed to fetch the data into a suitably

prepared descriptor. In this case the host variable stmt contains the SQL statement

SELECT * FROM tmp_table;

Finally, the intermediate table is dropped.

3.2.2 The INSERT statement and the non-cursor versions of the DELETE and

UPDATE statements

Data insertion is implemented through two functions in the EVTQL library, namely

evtql_insert_values and evtql_insert_query , which are invoked when the data to

be inserted are specified by means of the VALUES clause or an select subquery, respectively.

Data deletion and update are handled by the evtql_delete and evtql_update EVTQL

library functions. In all cases, the EVTQL library functions employ the algorithms used by the

terminal monitor application to handle the user request.

3.2.3 The OPEN statement

When a cursor is opened using the EXEC VTQL OPEN statement, the execution of the VTQL

SELECT query which is associated with the statement is actually triggered. The

evtql_open_cursor EVTQL library procedure distinguishes three cases for the processing

of the request:

1. the SELECT statement is snapshot-transformable and results either to a non-updatable

tuple set, or to an updatable tuple set, which is not derived from a valid time table. In this

case, the original statement is reconstructed into a host language string variable, and the

preprocessor-generated evtql_open_CName function is called. The reconstructed

statement is used as an argument to this call. This invocation triggers the preparation of a

statement and the opening of a cursor at the DBMS level.

The procedure completes by modifying the relevant entry in the table of cursors. Flags are

set to designate that the cursor is currently open, whether it points to an updatable tuple set

or not and the current status of the cursor, which is initially set to NO_CURRENT (no tuple

is current for the cursor). If the tuple set is updatable, an additional flag is set within the

entry, indicating that the tuple set is not derived from a table with valid time semantics.

- 17 -

2. the SELECT statement is snapshot-transformable and results to an updatable tuple set,

which is derived from a table with valid time semantics. In this case, the EVTQL library

constructs into a host language string variable an SQL query, which is identical to the

original one but its SELECT-list is extended to include all columns which are part of the

table’s schema, but are not listed in the original select list. These extraneous columns are

necessary for the implementation of the cursor forms of the DELETE and UPDATE

statements, which are described later. The steps of opening the RDBMS cursor and

registering the entry in the table of open cursors are identical to the ones described for case

(1), except that the “result set updatability” and “valid time semantics” flags are set to

TRUE. Additionally, memory for fetching the extra columns is allocated in the EVTQL

library’s private memory pool.

3. the SELECT statement is not snapshot-transformable. In this case, the

evtql_open_cursor procedure applies the algorithms used in the terminal monitor

application to evaluate the query, but stores the results in a temporary table tmp_table,

rather than displaying them on the screen. The query
SELECT * FROM tmp_table

query is stored into a host language string, and passed to the preprocessor-generated

function evtql_open_CName , so as to open the DBMS-level cursor. Finally, the

appropriate flags are set in the EVTQL library’s table of cursors, as in case (1). However,

in this case the “result set updatability” flag is set to FALSE (since the operations query

involves at least one set operation that renders the query result not updatable), and the

name of the temporary table is stored in the cursor’s entry.

3.2.4 The FETCH statement

When a FETCH command is processed, the evtql_fetch function locates into the table of

cursors the entry for the cursor through which data fetching is requested and verifies that it is

open. Afterwards, data are fetched through the DBMS-level cursor into the EVTQL library’s

memory calling the preprocessor-generated evtql_fetch_CName function. An

appropriately prepared descriptor is passed as an argument to this function. The fetched data

are subsequently copied into the variable list designated by the second parameter of the

- 18 -

evtql_fetch function (note that extraneous columns that are fetched for updatable tuple

sets that are derived from tables with valid time semantics are not copied). If no more data can

be fetched (as indicated by the sqlca.sqlcode status variable), the status field of the cursor

entry is set to DATA_EXHAUSTED , and the error is reported to the application through the

vtqlca.vtqlcode status variable. If, however, data fetching is successful, the cursor status is set

to HAS_CURRENT and control is returned to the application.

3.2.5 The DELETE statement (cursor form)

The evtql_delete_cur EVTQL library function initially examines if the cursor points to

an updatable tuple set. If the result set is not updatable or the cursor status is found to be

different than HAS_CURRENT , control is immediately returned to the application. If both tests

succeed, then the second parameter is examined to determine if the VT_selection syntactic

construct was used in the original statement, designating that only part of the tuple is to be

removed. If this syntactic construct was not specified, the whole tuple is deleted by

formulating into a host language string variable the embedded SQL statement
DELETE FROM table_name WHERE CURRENT OF dbms_cursor_name;

and passing it to the preprocessor-generated evtql_execute_CName function. If, however,

the VT_selection syntactic construct was specified, it is verified that table table_name actually

has valid time semantics (an error is raised if this is not the case) and one of the following

actions is taken, depending on the relative position of the tuple’s valid time (denoted as Tvt)

and the value of the expression used in VT_selection (denoted as Tdel):

1. if Tdel contains Tvt, then the whole tuple is deleted from the table.

2. if the time points included in Tvt but not in Tdel are consecutive, then the tuple’s valid time is

set to the difference Tvt - Tdel, by building the statement
UPDATE TableName SET valid_column = T new WHERE CURRENT OF dbms_cursor_name

into a host language string variable and calling the function evtql_execute_CName (Tnew

is set to Tvt - Tdel).

3. if the time points included in Tvt but not in Tdel are not consecutive, requiring thus two

periods for their representation (denoted as p1 and p2), then the tuple’s valid time is set to

p1, as described in case (2) and a new tuple is inserted in the target table. All columns of the

- 19 -

new tuple are equal to the modified tuple’s corresponding columns, except for the valid

time, which is set to p2.

4. if Tvt and Tdel do not overlap, no action is taken.

In all cases, the status field of the cursor entry is set to NO_CURRENT , disallowing further

deletions and/or updates, until the next tuple of the result set is fetched.

3.2.6 The UPDATE statement (cursor form)

Analogously to the evtql_delete_cur function, the evtql_update_cur EVTQL library

function initially verifies that the cursor actually points to an updatable tuple set and that a

current tuple exists, terminating prematurely if any of these conditions is not met. If both

checks succeed, one of the following actions is taken, depending on whether the VT_selection

syntactic construct was used in the original statement:

1. VT_selection was not used. In this case, the EVTQL library examines if the target table has

valid time semantics or not, and takes one of the following actions:

A. the table does not have valid time semantics. In this case, the current tuple is updated,

as specified in the SET clause, by using the cursor form of the embedded SQL UPDATE

statement (an appropriate UPDATE statement is formulated in a host language string and

passed to the evtql_execute_CName function). Errors reported by the DBMS are

trapped by the EVTQL library and reported back to the application.

B. the table has valid time semantics. In this case, the current tuple is removed from the

table, the new values of the columns designated in the SET clause are computed, and the

updated version of the current tuple is constructed. If value-equivalent tuples ([13])

with overlapping valid timestamps are not allowed for the updated table, the table is

scanned for tuples whose data columns are identical to the updated tuple’s

corresponding columns and whose valid time overlaps with the updated tuple’s valid

time. If such a tuple exists, the update violates this constraint, thus changes to the

database state made by this statement are undone and control is returned to the

application.

- 20 -

If no such tuple is found, the update procedure continues normally. In the case that valid

time tables are not stored in a coalesced form, the tuple may be flushed to the database

immediately. If, however, valid time tables are not stored in a coalesced format, the

updated tuple can not be inserted into the table at this point, since this insertion might

have the effect of altering the values of a tuple in the result set which has not been

fetched through the cursor yet. In other words, there may exist a tuple res_tuple in the

result set that has not been yet processed and can be coalesced with the updated tuple

(upd_tuple). Thus, inserting the tuple at this point will lead to replacing res_tuple with

the result of COALESCE(res_tuple, upd_part), which is undesirable. Instead of inserting

the updated tuple in the table at this point, it is stored in a pending tuple list, which is

associated with the cursor. These tuples are inserted to the database (and possibly

coalesced with other tuples) when the cursor is closed. However, the list is scanned

when the violation of primary key uniqueness is checked, to ensure that an update does

not clash with previous modification operations.

In both cases, the update operation completes by setting the status flag of the cursor to

NO_CURRENT , disallowing any further updates through this cursor until the next tuple is

fetched.

2. VT_selection was used. In this case, it is verified that the updated table is a valid time table,

and if it is not, control is immediately returned to the application with an appropriate error

indication. Subsequently, the part of the tuple which is subject to update is removed from

the database, following the procedure described for the cursor version of the DELETE

statement (paragraph 3.2.5). The removed part of the tuple is modified as specified in the

SET clause and, primary key uniqueness checks are conducted as needed (see case (B)

above) and the updated tuple is either flushed to the database or inserted in the pending

tuple list of the cursor, depending on whether a coalesced storage scheme is used for valid

time tables. Finally, the status flag of the cursor is set to NO_CURRENT , disallowing further

updates through this cursor until the next tuple is fetched.

- 21 -

3.2.7 The CLOSE statement

Cursor closing is handled by the evtql_close_cursor EVTQL library function, which

closes the DBMS-level cursor (by calling the evtql_close_CName function, which has been

created by the preprocessor), destroys the temporary table created during the SELECT

statement’s evaluation (if any), frees memory that was used for storage of extraneous columns

(for updatable results) and removes the corresponding entry from the EVTQL library’s table

of open cursors. If the list of pending tuples associated with the cursor is not empty, then the

tuples in the pending list are inserted in the table, performing any necessary coalescing.

Constraint violation checks (for value equivalent tuples with overlapping valid timestamps)

need not be conducted at this point, since all tuples in the pending list have been checked when

the corresponding UPDATE statement was processed.

4. Conclusions-Future Work
In this paper, we presented an embedded temporal language, and proposed an architecture for

its implementation, on top of a relational DBMS. The software modules comprising the

development environment were presented (the preprocessor and the EVTQL library), and the

algorithms employed by the software modules were discussed. Future work will focus on the

development of the EVTQL preprocessor and the EVTQL library for the TSQL2 language.

Optimisation issues will be also studied, along with techniques for enhancing concurrency

control within multi-user environments.

5. References
[1] A. V. Aho, R. Sethi and J. Ullman, “Compilers: Principles, Techniques and Tools”,

Addison-Wesley, 1985.

[2] G. Ariav, “Information Systems for Managerial Planning and Control: A Conceptual

Examination of their Temporal Structure”, Journal of MIS, vol. 8, 1992.

[3] M. Böhlen, “Temporal Database System Implementations”, SIGMOD RECORD Vol.

24, No. 4, December 1995.

[4] M. Böhlen, “TimeDB Software”, Department of Mathematics and Computer Science,

Aalborg University, 1995.

- 22 -

[5] R. Chandra and A. Segev, “Using Next Generation Databases to Develop Financial

Applications”, Proceedings of the First International Conference on Application of

Databases (ADB), Vadstena, Sweden, June 1994.

[6] J. Clifford, C. Jensen, R. Snodgrass, M. Böhlen, H. Dewand and D. Schmidt, “Panel:

The State-of-the-Art in Temporal Database Management: Perspectives from the

Research and Financial Application Communities”, Proceedings of the VLDB

International Workshop on Temporal Databases, Zurich 1995.

[7] C. Combi, F. Pinciroli, G. Musazzi and C. Ponti, “Managing and Displaying Different

Time Granularities of Clinical Information”, Eighteenth Annual Symposium on

Computer Applications in Medical Care, Washington DC, U.S.A. 1994.

[8] C. Combi, F. Pinciroli, M. Cavallaro and G. Cucchi, “Querying Temporal Clinical

Databases with Different Time Granularities: The GCH-OSQL Language”, Nineteenth

Annual Symposium on Computer Applications in Medical Care, New Orleans, U.S.A.,

1995.

[9] C. J. Date and H. Darwen, “A Guide to the SQL Standard” (third edition), Reading,

Massachusetts, Addison-Wesley, 1993.

[10] C. J. Date, “An Introduction to Database Systems” (sixth edition), Addison-Wesley

Publishing Company Inc., 1995.

[11] R. Hunter, “Compilers: Their Design and Construction Using Pascal”, Wiley and Sons,

1985.

[12] Ingres Corporation, “Ingres SQL and ESQL Reference Manual” (for release 6.4), 1991.

[13] C. S. Jensen, J.Clifford, R. Elmarsi et al. "A Consensus Glossary of Temporal Database

Concepts", SIGMOD Record, 23(1), pp. 52-64, March 1994.

[14] Oracle Corporation., “SQL Language Reference Manual” (for release 7), 1993.

[15] Oracle Corporation, “ORACLE8 Time Series Cartridge User’s Guide”, November 1997.

[16] ORES Project (ESPRIT III P7224) Deliverable D4.2: “Application Manual”, edited by

01 Pliroforiki, University of Athens, Agricultural University of Athens and Information

Dynamics, 1993. Available at ftp://ftp.di.uoa.gr/pub/ores/rep/d4_2.ps.gz.

[17] D. Schmidt and R. Mari, “Time Series, a Neglected Issue in Temporal Database

Research?”, Proceedings of the VLDB International Workshop on Temporal Databases,

Zurich 1995.

ftp://ftp.di.uoa.gr/pub/ores/rep/d4_2.ps.gz

- 23 -

[18] Sybase Inc., “Transact SQL User’s Guide” (for release 10), 1994.

[19] B. Theodoulidis, A. Ait-Braham and G. Karvelis, “The ORES Temporal DBMS and the

ERT-SQL Query Language”, Proceedings of the 5th International Conference on

Database and Expert System Applications, Athens 1994.

[20] K. Torp, C. Jensen and M. Böhlen, “Layered Implementation of Temporal DBMSs-

Concepts and Techniques”, TimeCenter Technical Report TR-2, 1997 available from

http://www.cs.auc.dk/general/DBS/tdb/TimeCenter/publications.html

[21] K. Torp, C. Jensen and R. T. Snodgrass, “Stratum Approaches to Temporal DBMS

Implementations”, TimeCenter Technical Report TR-5, 1997, available from

http://www.cs.auc.dk/general/DBS/tdb/TimeCenter/publications.html

[22] The TSQL2 Language Design Committee, “The TSQL2 Temporal Query Language”,

Edited by R.T. Snodgrass, Kluwer Academic Publishers, 1995.

[23] C. Vassilakis, P. Georgiadis and A. Sotiropoulou, “A Comparative Study of Temporal

DBMS Architectures”, Proceedings of the 7th International DEXA Workshop, pp. 153-

164, Zurich, 1996.

http://www.cs.auc.dk/general/DBS/tdb/TimeCenter/publications.html
http://www.cs.auc.dk/general/DBS/tdb/TimeCenter/publications.html

