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Abstract

We propose a model for the estimation of query execution time in an environment supporting bushy and
pipelined parallelism. We consider a parallel architecture of processors having private main memories, accessing
a shared secondary storage and communicating to each other via a network. For this environment, we compute
the cost of query operators when processed in isolation and when in pipeline mode. We use those formulae
to incrementally compute the cost of a query execution plan from its components. Our cost model can be
incorporated to any optimizer for parallel query processing, that considers parallel and pipelined execution of
the query operators.
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1 Introduction

The development of coarse-grain parallel systems allows the implementation of parallel databases, but extends the
requirements posed on the query optimiser. For example, communication overhead and the impact of parallelism
on the execution algorithms must be taken into account. For a survey on the impact of parallelism on query
execution, including cost estimations for various parallel algorithms, the reader is referred to [5].

Parallelism can be exploited during execution of a query by processing an operator in parallel (intra-operator
parallelism) and by processing different operators in parallel (inter-operator parallelism). Two types of inter-
operator parallelism are distinguished, bushy parallelism and pipelining. In bushy parallelism, independent op-
erators are processed simultaneously. In pipelining, interdependent operators are processed concurrently, passing
buffered data to each other in producer-consumer mode.

The exploitation of inter-operator parallelism i1s determined by the structure of the processing tree used to
represent the initial query [12]. The simplest type is the left-deep tree, used e.g. in System R and R* [17, 14].
This tree type does not allow pipelining. Also, since at most one child of any node can be another operator, bushy
parallelism cannot be exploited either. In the right-deep tree [16], all operators are executed in pipeline mode, but
the memory demand is high. The zigzag tree [25] alleviates this problem by combining left-deep and right-deep
subtrees. Right-deep stratified trees [1] exploit pipelining, while supporting also bushy parallelism to a limited
degree. However, bushy and pipelined parallelism can be fully exploited only if the processing tree is bushy itself
[5, 12].

The cost of parallel execution is not only affected by the types of parallelism exploited, but also by the degree
of parallelism for each type. Hence, parallel query optimizers face the problem of whether scheduling information,
including the specification of the degree of (each type of) parallelism, should be incorporated on the query execution
plan and modelled in the cost function, or not.

One approach to this problem is the generation of an optimal query execution plan and the subsequent con-
struction of an optimal schedule for it. In [7], a parallel schedule is generated from an optimal sequential query
execution plan using heuristics. In [6], a scheduling algorithm taking multitasking and communication cost into
account is applied on an already available query execution plan. The advantage of this approach is that scheduling
can be postponed to run-time, when information on the available processors is available. The disadvantage is that
there is no guarantee that the schedule, though optimal for the query execution plan, is also optimal for the original
query [12].
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Another approach is the incorporation of parallelism into the cost model, by modelling resource utilization.
This approach is adopted in [4, 12, 19]. These models provide a better approximation of the query execution cost.
However, the output of the cost function is no more a single value, but a vector of values describing the execution
cost and the corresponding resource utilization. This approach faces the disadvantage of maintaining several query
execution plans with different demand on resources, so that one is chosen at run-time according to the actual
resources available. Moreover, query execution plans with different resource demands are not directly comparable.
This implies the need of a special metric and increases considerably the search space of query optimizers generating
alternative query execution plans to find the optimal solution, as those described in [9, 10, 12, 13, 21].

In this study, we present a cost model for the estimation of I/O and communication cost in a parallel shared-
disk database system. We adopt the bushy tree representation to exploit both bushy parallelism and pipelining.
Our approach to the exploitation of parallelism stays between the two approaches mentioned above. We take
parallelism into account when we estimate the query cost, but we do not incorporate the degree of parallelism into
the model. By incorporating the impact of parallelism to the cost function, we allow the optimizer to find a better
approximation of a parallel optimal plan, than a sequential cost model would do. By not specifying the degree of
parallelism, we allow the combination of the optimizer with a scheduler, that may even perform dynamic run-time
re-scheduling.

The main contribution of our work lays in the development of a generic model for the estimation of com-
munication and I/O cost during parallel and pipelined execution, which can be used by an optimiser to select
among query execution plans, without the need of a special comparison metric. We analyze the operator cost by
considering various algorithms and studying the behaviour of each one in pipelined execution. We then combine
the cost components to compute the cost of the entire query execution plan. Although the cost model is used for
an optimizer processing bushy trees [21], it can also be applied to any other tree type, such as right-deep trees.

In the next section we describe the architecture, storage structures and algorithms considered, and the cost
parameters describing them. In sections 3 and 4 we present the cost formulae for isolated and pipelined processes,
respectively. In section 5 we combine our cost formulae to estimate the execution cost for a bushy tree. We also
present briefly our optimization prototype, into which this cost model has been incorporated. Section 6 concludes
our study.

2 Cost Parameters of Parallel Database Querying

2.1 The Parallel Database Environment

We consider a parallel database system on a shared-disk parallel machine. Each processor has its own private
memory, and accesses the shared disk peripherals and the other processors via a network. We assume that the
bandwidth of the network is high enough to justify pipelining over local processing; parallel machines and modern
LANSs already satisfy our requirement.

In this parallel environment, we consider bushy and pipelined intra-query parallelism. We do not address
intra-operator parallelism for two reasons. First, we believe that the exploitation of inter-operator parallelism is
necessary for efficient query processing [12]. Hence, we want our model to be applicable to systems offering just
a low degree of parallelism, since parallel systems with low processing power are more widespread than massively
parallel machines. Second, our model should be appropriate not only for conventional queries with a modest
number of joins, but also for large join queries. Such queries occur in emerging non-conventional applications,
including the coupling of RDBMSs with knowledge bases and expert systems, object-oriented databases, etc [24]:
for such queries, the available processing power may suffice to offer inter-operator parallelism but not intra-operator
parallelism.

We consider “PSJ”-queries, i.e. queries consisting of projections, selections/restrictions and joins. For those
operators, we model the cost of uniprocessor algorithms. We consider two restriction algorithms, one processing
sorted and one processing unsorted input. Projections perform sorting and duplicates’ removal. Sorting is imple-
mented as an (M — 1)-way merge sort method [11], where M is the processor’s memory. For joins, semijoins and
antijoins [11], we consider the nested loops method and the merge algorithm on sorted input; for equijoins, #-joins
and antijoins, the classic hash method [18] is also applicable. We assume that relations are stored in sequential
files. We do not consider clustering or indexing. However, our results are also applicable on sequentially traversable
indices (e.g. inverted files).

Restriction and join algorithms “filter” their input, i.e. they remove attributes not used in subsequent operations
(without removing the produced duplicates), in order to reduce the size of the intermediate results. As part of the
filtering policy, a relation is not read from disk as a whole; only the attributes appearing in the predicates and the
output of the query are retrieved from secondary storage. So, any relation sizes mentioned hereafter refer to the
vertical fragments of the base relations, that consist only of the attributes referenced in the query predicates.



2.2 Parallel Query Tasks

The tasks in our cost model are the query operators, namely projections, restrictions and joins; set operators and
aggregates fall beyond the scope of this study. Since we adopt the bushy tree representation, the cost formulae
estimate the execution time of tasks across coercing pipes. Tasks belonging to different pipes are executed simul-
taneously, so that the total query cost is the cost of the slowest pipe. We consider only I/O and communication
cost, since the CPU cost of the above query operators is negligible.

As noted in the introduction, the degree of parallelism is not taken into account. We assume that each task, cor-
responding to a node in the bushy tree, is executed by one processor; if this requirement cannot be met at runtime,
multitasking is performed. Our formulae still hold, assuming that the processors of the parallel machine can per-
form multitasking, using any task management technique, such as time slicing. In the presence of transputer-based
systems the nodes of which can perform multitasking using parallel threads (e.g. SuperCluster’™ of Parsytec),
and of parallel systems built as networks of multiuser workstations [3], this assumption is acceptable.

The cost parameters presented hereafter concern the size of the base relations referenced in the query and the
selectivity factors of the query operators. Relation sizes are usually stored in the data dictionary, while selectivity
factors are estimated using database statistics gathered by the optimizer [17].

2.3 System and Database Parameters

The parallel query processor is installed on a system of processors and peripherals connected via a network. For
our cost model, we consider the following system parameters:

PG Size of a “page”: the page is the unit of data transfer; it can effectively be a buffer of any predefined length
M Memory size in pages

taisk Disk transfer time for one page

tnet Network transfer time for one page

tswiteh Time to load one page in memory during process switching; this value is assumed to be comparable to ¢,

As noted in subsection 2.1, the bandwidth of the network is high enough to justify pipelined execution. This
means that t,. < tgsk.

Next, we identify the database parameters affecting query execution cost. Let R be a relation with K attributes,
denoted as R.C4,...,R.Cy or C1,...,Ck when no ambiguity occurs. For relation R, we consider the following:

Npr Number of tuples of relation R,
Lpr Tuple length for R; average length for tuples of varying length

lr.c; Maximum length of the value of an attribute R.C; of R

Pr Number of pages of relation R: R = %

nr.c, Number of distinct values of the attribute R.C; of R

¥R,c;...c, “Filtering factor” for relation R over attributes Cy, ..., C,. This factor is defined as the fraction of the
tuple size of the vertical fragment of R consisting of those ¢ attributes, divided by the tuple size of R, namely

2!
=1 R.C;

7 . When no ambiguity occurs, we denote this factor as ¢g 4.

2.4 Selectivity Factors

In the query tree representation, a task/node receives one or more input streams from its children and produces
one output stream forwarded to its parent. The selectivity factor is defined as the ratio of output to input tuples
for a task, i.e. as the value of ﬁ We consider selectivity factors for restrictions, projections, joins, semijoins
and antijoins. Since the output of each such operator is a new relation, we indicate the selectivity factor of an

operator by the name of the relation(s) on which it is applied.
fr Selectivity factor for restriction f on R
mr Selectivity factor for projection m, including duplicates’ removal, over R

Jr s Selectivity factor for the classic join (as opposed to antijoin) on R, S



AJRr,s Selectivity factor for the antijoin between R, S where R is the outer relation

The page selectivity factor (PSF) is defined as the ratio of output to input pages for a task, namely as the value
Poutput
Pinput

e For a restriction retaining ¢ attributes of R, the page selectivity factor is:

PSFR — Noutput : Loutput

= . 1
N = - png (1)

e A projection removes no attributes of the input relation R, since filtering is performed by restrictions and
joins. So, Loytput = Lr. Therefore:

Nou u 'Lou u P
PSFR:%:WR (2)

e For a join (classic join, semijoin or antijoin) applied on R, S the page selectivity factor is:

Noutput Loutput
—h L - PG
— PG _ . Doutput <
PSFrs = NrLrNsLs SFr,s Lr-Ls (3)
PG?

where SFg g stands for Jg s (join and semijoin) or AJg s (antijoin).

If the operator is a classic join, its output is a relation RS. Its tuple length is:

qr qs
Lrs = ¢Rqgr - LR+ ¢5,95 - Ls = ZZR.Cl + le.c, (4)
i=1 i=1

where qr denotes the retained attributes of R and ¢s denotes the retained attributes of S.

If the operator is a semijoin or an antijoin with outer relation R, then the output is a vertical fragment of
R. Tts tuple length is:

9r
Loutput = YRqr Lp = ZZR.C’, (5)
i=1
3 Cost Formulae
The cost formula for each operator and available algorithm is:
Toperator = T‘input + Enterm + Toutput (6)

Tinput 1s the cost of retrieving the input relation(s). Toutput is the cost of forwarding the output relation to the
parent task or to disk, assuming that the final output stream is written to disk for subsequent usage. Tinterm 18
the cost of storing intermediate results on disk. For some operators, Tinterm 18 zero.

Let ¢ indicate tgisk, tnet OF tswitcn depending on whether the data stream is read from/written to the shared
disk, another processor’s memory or the memory of the same processor during process switching. When ambiguity
may occur, we denote the relation being retrieved as a subscript to #'.

The input cost for an operator is the time needed to read the (slowest) input stream; unary operators have
only one input stream, while binary operators read two input streams simultaneously.

P; - for unary operators -
ﬂnput = { et Y op ({)

. . / . . / 1
max(Pnput, input,s Pinputs tmput2) for binary operators

The output cost of an operator is the time needed to transfer the output pages to their destination:

Toutput = Poutput -t (8)



3.1 Cost of a Restriction

A restriction on a relation R reduces the size of the R horizontally by a selectivity factor fr (tuple elimination)

and vertically by a filtering factor ¢ , (only ¢ attributes are retained). So, using Eq. 1, the size of a restriction’s
output is:

Poutput = Prestr—out = YRq fR - Pg (9)

A restriction does not produce any intermediate results. Hence, Tinterm = 0. If R comes sorted on the restriction

attribute R.Cj, then only the pages having tuples satisfying the restriction predicate need to be retrieved. So, using
Equations 6, 7 and 8, the cost of a restriction is:

Pr t' 4+ Prostr—out - t' , if R does not come sorted

F¢r-Pr-t' 4+ Prestr—our - t' , if R comes sorted (10)

Trestriction = {

where Fyp denotes the percentage of tuples of R that need to be retrieved; Frp < 1.

3.2 Cost of a Projection

Since restriction and join algorithms filter their input, there are no redundant attributes for a projection to remove,
i.e. the relation R input to the projection will consist of exactly the attributes to be forwarded to the parent task.
Using Eq. 2, the size of a projection’s output is:

Poutput = Pproj—out =7mRr-Pgr (11)

If the projection must sort its input and if the memory is not adequate for sorting, then intermediate data are
stored on disk. Therefore:

T ] 0 ,if Pr < M — 1 or no sorting is performed (12)
interm Pr -logpr—1PR -tgisk , otherwise
Using Equations 6, 7 and 8, the projection cost is:
Tprojection = PR . t/ + Tinterm + Pproj—out 'tl (13)

3.3 Cost of a Join

We first consider the classic join operator; semijoins and antijoins are considered separately.
The join is applied on two relations R, S and produces an output relation RS. According to Eq.3 and Eq.6,

the size of RS is:

L
Poutput = Prs = Jrs - PG- —L5— . Pp . Ps (14)
Lr-Ls

This size is used in Eq. 8 to estimate the cost of forwarding the output stream to the parent node on the processing
tree. The cost of Tippy: and of Tipterm depends on the join algorithm, as described hereafter.

3.3.1 Nested Loops Join Algorithm

In the nested loops algorithm (nl), the outer relation should be the smallest one, in order to reduce the number of
iterations [11]. However, if only one relation fits in main memory, it is used as the inner relation to avoid repeated
disk accesses. Let R be the outer relation. This implies that either Np < Ng or Ps < M < Pg.

For the algorithm to start, the whole inner relation S must be read; this retrieval normally overlaps the retrieval
of the outer relation R, of which only a single page, hereafter denoted as 1g, is necessary to start. Then, if the inner
relation fits in memory, the cost of the join is only CPU-cost and thus negligible. Otherwise, the inner relation
must be stored on disk and be repeatedly read from it for each of the N tuples of the outer relation. Finally, the
output relation of size Prg is output (to the parent task or to disk).

e Nomne of R,S comes sorted on the join attribute:

T, = { max(1g -1, Ps - ts) + Prs -t/ Jif PR< M —1 (15)

maX(lR~th,P5 ~tg)+NR~PS “tgisk + Prg -t S P> M —1

e At least one of the relations comes sorted on the join attribute:
After initially retrieving the relations, comparisons need only be performed for the distinct values of the
sorted relation(s). If the inner relation does not fit in main memory, it needs to be retrieved from disk for
less than Npg times. So, we replace the term Ng - Pg by:



— nr.c, - Ps, if R comes sorted on the join attribute R.C}

— Ng- %, if S comes sorted on the join attribute S.C;

— nRC; - %, if R comes sorted on R.C; and S comes sorted on S.Cj.
If the inner relation fits in main memory, no intermediate results are produced. So, sorting has no impact
but on the CPU cost, which is negligible.

3.3.2 Merge Join Algorithm

The merge join algorithm (mj) is only used when both relations come sorted on the join attribute. The relations
are retrieved in parallel. So, Tinpy: 1s the cost of reading the largest one. Hence, the cost of the algorithm is:

ij ImaX(PR~tIR,P5~t{9)+PRS -t (16)

3.3.3 Hash Join Algorithm

For the hash join algorithm (hj), we assume that R is the outer relation. Hence, the hash table is built for S. Our
assumption also implies that Ps < Ppg.

The cost of creating the hash table HTg is the cost of retrieving S and writing it to disk for subsequent read
operations. Then HTg and R are joined as in a nested loops join (Eq.15) having HTg as the inner relation. For
each qualifying entry of HTs, the tuples of S having that value for the join attribute are retrieved. The join
attributes are then compared to detect possible collisions. The cost of this operation is Fjg - Ps - tgis, where Fjg
denotes the percentage of retrieved tuples of S and depends on the join selectivity factor and on the hash function.

e R does not come sorted on the join attribute

max(1lg - th, Ps -t%s) + Ps - taisk+
F;s - Ps -taisk + Prs -t/ ,if Pprg <M -1
max(1lg - th, Ps -t) + Ps - taisk+
Ng - Purg - taisk + Fjs - Ps - tgisk + Prs -t'  , if Pgpe > M — 1

Thj = (17)

e R comes sorted on R.C}
The loop between HTs and R needs to be performed only for the distinct values of R.C;. Improvement
occurs therefore only if the hash table does not fit in memory. Then the term Ng - Py is replaced by
nr.c, - Pars, as for the nested loops join.

The cost of the hash algorithm does not change if the inner relation S comes sorted on the join attribute.

3.4 Cost of a Semijoin

We now consider the cost of a semijoin. We adhere to the usual convention of assuming that the relation retained
in the output is the left one, in our case R. The semijoin filters its input by a filtering factor ¢g 4, denoting that
q attributes are retained.
A tuple of R is forwarded to the output as soon as one tuple of S satisfying the join condition is found. Thus,
R is used as the outer relation in the nested loops and the hash method, so that the inner loop be interrupted as
soon as a match is found. The size of the output is computed according to Eq.3 and Eq.5:
Jr,s ¢rq PG

Poutput = Prjs = PSFRrs - Pr- Ps = — L. Pg - Ps (18)

where the notation Pipjs is used to indicate that the output of the semijoin on R, S is a subrelation of R.
For the nested loops algorithm and the hash algorithm, we split the cost of the loop to that of discarding
inappropriate tuples and that of finding appropriate ones. Initially, S must be retrieved as a whole. For subsequent

retrievals, let Pre(Ng), Pre(Pg) be the number of tuples (respectively pages) of S retrieved prior to reading the
first tuple that satisfies the join predicate.



3.4.1 Nested Loops Semijoin Algorithm

The cost of the nested loops semijoin algorithm (nls) is computed similarly to the cost of the corresponding
algorithms for the join.

e None of R, S comes sorted on the join attribute:
Then, similarly to Eq.15 for the classic join, the cost of the semijoin is:

T { max(lp - th, Ps - t%s) + Pgjs - t' JifPR<M-—1
nls —

max(lR ~t%,P5 tIS) + Ng - Ps - tgsr + P[R]S i PR>M-—1 (19)

e If any of the relations comes sorted on the join attribute, we replace Ng - Pg by:

— nRr.c,, if R comes sorted on the join attribute R.C;

— Ng - %, if S comes sorted on the join attribute S.Cj

— npc, - %, if both R comes sorted on R.C; and S comes sorted on S.Cj.

3.4.2 Merge Semijoin Algorithm

The cost of the merge semijoin algorithm (msj) is computed similarly to the cost of the classic join, as depicted in
Eq. 16. Namely:

Tnsj = maX(PR ~t§%, Pg tIS) + P[R]S -t (20)
3.4.3 Hash Semijoin Algorithm

In the hash semijoin algorithm (hsj), we again assume that R is the outer relation. The cases we consider are
identical to those for the classic join:

e R does not come sorted on the join attribute:

max(1g - t, Ps - ts) + Ps - taisk+

T = Fjs~P7"6P5~tdisk—|—P[R]5~t/ ,ifPHTS <M-1 (21)
"3 = max(lg -th, Ps -t5) + Ps - taisk + Nr - Prre - taisk+
Fis - Pre(Ps) -taisk + Pr)s -t Af Pgre > M — 1
as in Eq.17.

e R comes sorted on the join attribute R.Cj:
The term Ng - Pyr. is replaced by nr.c, - Pure.

3.5 Cost of an Antijoin

Finally, we consider the antijoin operator. Let [ R.C; = = S.C; | be an antijoin. A tuple of R with R.C; = ¢
satisfies the antijoin predicate if and only if there is no tuple in S such that S.C; = ¢ [11].

The notation of SQL [2] restricts the semantics of the antijoin in that only a subrelation of the outer relation
R is output. We adopt this restriction and observe the antijoin as a special case of semijoin, except that we use
a special notation for its selectivity factor. Hence, the formulae for the nested loops antijoin (nla), merge antijoin
(maj) and hash antijoin (haj) algorithms are identical to the respective ones for semijoins, as shown in subsection
3.4, replacing Jr s by AJgr s in Eq. 18.

4 Cost of Consecutive Operators Across a Pipe

Let s0, sl be two adjacent tasks, such that the output of the producer task s0 is read by the consumer task sl.
The cost of those two tasks is the sum of the cost of s0, until it produces enough pages for sl to start, and of the
cost, of s1. If s1 i1s a binary operator, then it receives input from two producers, and must wait until both of them
produce the data expected. Hence, the cost of the three tasks is the sum of the cost of the producer finishing last
in the generation of the required data, and the cost of s1. This holds even if a producer generates zero output
pages. Then, the cost of the tasks is the cost of the producer until it completes, since the consumer must wait to
retrieve input; then, the cost of sl is zero for forwarding zero pages to its own consumer.

Let N (respectively P) be the number of tuples (pages) retrieved by a task s0. Then, SF - N, respectively
PSF - P, are the tuples (pages) retrieved by its consumer s1, where SF is the selectivity factor for tuples and



PSF is the corresponding one for pages. Let £ be the number of tuples that must be produced by s0 before sl
can start. Then the number of tuples processed by s0 to produce them can be estimated using the Hypergeometric
Waiting Time Distribution [15]:
~ N+1 o
A (22)
We hereafter derive the formulae estimating the number P of pages that must be processed by s0 in order to
produce the pages needed by sl to start, since the page is the transfer unit for network and disk. We will apply
the P value(s) on the formulae in section 3, in order to estiamte the cost of each task in pipeline mode. Within
a pipe, the cost of producing the output of a task is overlapped by the cost of the consumer receiving i1t and is
therefore set to zero, except for the pipe’s last producer, which has no consumer. For pipes consists of more than
two adjacent tasks, the formulae are used recursively to compute the number of pages processed by each task
before its consumer can start. B
In the following, we denote by P the number of pages processed by s0 to produce k tuples for s1. We denote
by N the respective number of tuples and by L the tuple length. Note that L refers to the tuple length of the

relation input to sl, i.e. after the filtering applied by s0. It holds that N = ﬁ%.
Hereafter, we denote by fyR the time needed to for the child of sO producing R to send yr pages to s0.

4.1 Cost of Pipeline with Unary Producer

Let R be the relation input to producer s0. Then, Ng is the number of tuples input to s0 and Lg is their tuple
length. According to Eq.22:

F_L-N_ L N+l _ La(Vrtl) i, Prtis (23)
=P Y PG SEF - Nax1l N ILa(8FN =h- L
PG PG SF-Np+1 % SF.Pp+ L&
K pages
If s0 is a restriction, then SF = fr and L= ©R,q - Lr. Hence:
L
ﬁﬁestr — k. $R,q " Lr . Pr+ %
PG fr-Pr+ IL:—Z
So, using Equations 10 and 23, we express the cost of a restriction task in a pipe as:
N~ sty prestr ¢/ , if R is not sorted .
Trestr—inpipe = T( R ’ )+ R Srestr 41 . . . (24)
Frp- P -t" | if R is appropriately sorted

It is worth noting that the cost of the restriction in pipe does not contain the time required to generate the
output, since this time is overlapped by the execution of the consumer. This holds for all types of tasks in a
pipeline. A

_ If s0 is a projection sorting its input, then it cannot produce any output before reading the entire input. Hence
Pgmj_son = Pgr. If s0 simply removes duplicates from an already sorted relation, then:

ﬁproj—nosort —k Lgr Pr + IL—"—g
R — "' oo p_ | Lr
PG np-Pr+ Vel

where we have set SF = mg and I = Lp.
So, using Equations 13, 12 and 23, we express the cost of a projection in a pipe as:

i t ~ i t . . .
T(PReI=noserty 4 pRrOITRONOTE ¢f - if no sorting is performed

Toroj—inpipe = § T(Pr) + Pr -t' , if sorting is performed and PR < M — 1 (25)
Pr -t + Pr -logar—1 PR - taisk , otherwise

4.2 Cost of Pipeline with Binary Producer

The binary producers are join operators applied on two relations R, S. We distinguish among classic joins, semijoins
and antijoins.



The number of pages processed by the binary producer in order to generate K pages for its consumer is:

Pr + g(Ps)

Poutput

Py = K.

where R is the outer relation and S the inner one. The value of g(Ps) depends on the join algorithm, as will be
described below. The P%9 consist of pages of R and pages of S.
We assume that:

~ PR
P9 = K .
R Poutput
and that: .
pas - . I(F5)
Poutput

This assumption relies on the fact that the two relations do not contribute equally to the construction of the K
pages. A more sophisticated approximation would be that:

ﬁglg =2p- ﬁalg
and
ﬁ;lg =z - ﬁalg
where zg, g is the selectivity of the join operator on R (respectively S), actually a fragment of the selectivity
factor. Below, we use the former approximation.
4.2.1 Classic Join in Pipeline

The output relation RS of a join has a size of

L
Prs = Jps - PG-—25_  p,.pg
’ Lr-Ls

according to Eq. 14. Hereafter, we use this value to estimate the portion of pages of R and of S needed to generate

K pages for the consumer of the join task. In the folloging, the equality P = % is extensively used.

Nested loops join algorithm. The outer relation R is retrieved once, while S is retrieved Ng times in the
general case. So, the K pages required by the consumer are produced after retrieving P™ pages:

~ Pr+ Np - P
prl— g IRT VR TS (26)
Prs
The inner relation .S must be read in its entirety, before any output can be produced. Hence, }351 = Ps. For the
outer relation R it holds:
~ . Pr B Lr-Lg B Lp
PR =K. =K =K. 27
B Prs Jr,s - Lrs - PG - Ps Jr,s - Lrs - Ns 27
whereby Nﬁl = P’Ti%. Thus, using Eq.15, we compute the cost of a nested loops join in a pipe as:
o _ _ 0 A Ps <M —1
Thi—inpipe = max(T(PR') + PR -t T(Ps) + Ps - tp.) + (28)

ﬁgl-Ps-tdisk ,ifP5>M—1

If R comes sorted on the join attrribute R.C;, then Nr must be replaced by ngr ¢, in Eq. 15, as described in
subsection 3.3.1. Assuming a uniform distribution of values, we can assess that the number of distinct R.C; values
within the Nﬁl tuples 1s:

Ny
Ng

nR.ci = NR.C; - (29)
We replace the value ﬁﬁl in Eq. 28 with this value of ng. ;.

If S comes sorted on the join attribute S.C;, then Pg in the factor ﬁﬁl - Pg - tg;si 1s replaced by ni,s’ - Pg, as
described in subsection 3.3.1.




Merge join algorithm. The input relations R, S are consumed at the same rate. The K pages required by the
consumer task are produced after retrieving P™/ pages:

- Pr+ P
pPmi— K. Rt s
Prs
Using the value of Prs from Eq. 14, it holds that:
o~ . Lp-L L
Ppi=K - Ul =K. f
Jr,s - Lrs - PG - Ps Jr,s - Lrs - Ns

~ Lr-L L
PM =K. roos K 5

Jrs-Lrs-PG-Pr .JR,S'LRS -Np

Thus, using Eq. 16, the cost of a merge join in a pipeline is calculated as:

T —inpipe = max(T(PR) + PR -t T(PTY) + PP -1%) (30)

Hash join algorithm. Similarly to the nested loops method, the hash table HTg is processed Ng times. The
inner relation .S must be retrieved in its entirety in order to construct the hash table. As soon as the hash table is
constructed, only a fragment of S needs to be read and tested against the join predicate in order to produce the
K pages required by the consumer. B

The K pages are produced after processing P" pages:

Pr+ Ng - Puyrc + Fjs - Ps
Pps

Phi = K

Using the value of Pgrs from Eq. 14, it holds that:

~p Lr-L L
Pl =K. 25 SR L —
Jr,s - Lrs - PG - Ps Jr,s - Lrs - Ns
~ Dhi,
whereby Ngj = PRL:G. Similarly,

Ng - Pyps + Fjs - Ps

Lgrs-PG
Jrs- Fote ProPs

PM =K.

Each entry in the hash table consists of the hash value of S.C; and a pointer to the tuple. We assume that
the hash value has the same size as the attribute itself and that the pointer has a constant size “ptr”. If the hash
function were perfect, it would hold that:

(Is.c, + ptr) - ng.c,
PG

However, hash functions cause collisions. So, the single pointer of each entry must be replaced by a list or chain.
(Is.c,+ptr) Ns
PG

Pyr, =

Therefore, we replace ng.¢;, by Ns and set the product as an upper limit for the table’s size. So:

. Por - Foo.T,
ph = k.M 5 g I8 8 o
Jr,s - Lrs - Ps Jr,s -Lrs - Ng
~pi . lsc, +ptr . Fis-Lg
ph <« g.5CGTET L g 95 TS
5= Jr,s - Lrs Jr,s - Lrs - Ngr

The value ]ng is only used for tests over S after the hash table has been constructed and joined with R.
Thus, using Eq.15, we compute the cost of a hash join in a pipe as:

' ' _ 0 Jif Ppe <M —1
Thj—inpipe = max(T (P! )+ Pl 4, T(Ps)+Ps-ts)+Ps taisn+Fjs-Pg’ taisi+ .
Ng’ - Pyre -taisk , if Pagre > M — 1
(31)
As in the nested loops join, if R comes sorted on the join attrribute R.C;, then Nr must be replaced by ng.c,
in Eq. 17, as described in subsection 3.3.3. Similarly to the above discussion for nested loops joins in a pipe, we
assume a uniform distribution of values and assess that the number of distinct R.C; values within the N}Z] values
is: )
- N
nNrc; = NR.C; - N—R

We replace the value N-}gj in Eq. 31 with this value of ng.¢;.
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4.2.2 Semijoin in Pipeline
The output of a semijoin is a subrelation of its outer relation R. According to Eq.18, its size is:

_ Jrs - prq PG

.Pp-P
e R s

Prs

Hereafter, we use this value to estimate the portion of R and of S pages needed to generate K pages for the
consumer of the semijoin’s output.

Nested loops semijoin algorithm. Similarly to the nested loops join, the number of pages read to produce
K pages for the semijoin’s consumer is:

Pr+ Ng-Ps

P = K
Frs

The inner relation S is read in its entirety, 1.e. ﬁgls = Ps. Using the value of Ppjs from Eq.18, the number of
pages for the outer relation R is estimated as:

~ P L 1
pps=g. - — . 5 =K.
Pirs Jr,s - ¥R PG - Ps JRs - ¢Rq - Ns
whereby N‘E“ = PELS%. Thus, using Eq.19, we compute the cost of a nested loops semijoin in a pipe as:
0 Jif Pe < M —1
Thts—inpipe = max(T(PR'*) + PRY -, T(Ps) + Ps - t%) + (32)

Nﬁl5~Pg~tdisk ,ifP5>M—1

If R comes sorted on the join attribute R.Cj;, we replace Nﬁ“ with the value of 7R ¢,, as computed in Eq. 29.
If S comes sorted on the join attribute S.C;, then Pg in the factor ... Pg -t4;sx should be replaced by %, as

described in subsection 3.4.1. We can approximate Pre(Ng) by %, assuming a uniform distribution of values.

Merge semijoin algorithm. Similarly to the merge join algorithm, the number of pages required to produce
K pages for the semijoin’s consumer is:
Prt P

Prs

Pmsi = K
Using the value of Ppjs from Eq.18, the number of pages for each input relation is:

1

R -
R JR,S *¢PR,q - Ns

Ls i Ls
= K -
Jr,s - ¢rq - PG - PR Jr,s “¥Rrq - Lr-Ng

Thus, using Eq.20, we compute the cost of a merge semijoin in a pipe as:

PP = K-

Tonsj—inpipe = max(T(PRT) + PR -t T(PG™T) + PG - 1) (33)

Hash semijoin algorithm. Similarly to the description of classic joins, the hash table HTy is created for the
Jjoin attribute of S, which must thus be read in its entirety. Subsequently, only a fragment of .S needs to be read
to produce the K pages for the semijoin’s consumer. The K pages are produced by processing P"*J pages:

Pr+ Ng - Purc + Fjs - Pre(Ps)

Phsi = K
Pirs

Using the value of Pgpjs from Eq.18, the number of pages for the outer relation R is:

1

Phi=fg. —
Jr,s *¢R,q - Ns

R \hsi _ Pr-PG
whereby Np™ = ~&—=,

Lr

11



(Is.c,+ptr)-Ns

Similarly to the classic joins, we adopt as an upper limit of the hash table’s size the quotient el , SO
that:
~hsi Ls-Ng-P Lg - F;s - Pre(P
Pgsg - K. s Np - PHTs LK. s - Fjs - Pre(Ps)
Jrs - PRq PG Pgr- Ps Jr,s - ¢R,q - PG Pp- Ps
~hed Ls-Lp-(l tr) - N, Ls-F;s- P
Phi < K. s Lr-(ls.c; + ptr) S LK. 5 Fjs- Ps N
JR)5~QDqu~P5~PG 2~JR’5~QDR’<1~PG~PR~P5
o Le-(l t Lo -Fic.P
i < K. R (S.CI+P7°)+R,.. s Fjs- Ps
JR,S PR 2-Jps  ¢Rrq- PG-Prp-Ps
Thus, using Eq.21, we compute the cost of a hash semijoin in a pipe as:
Thsj—inpipe = maX(T(ﬁﬁ”) + ]S}ZSj A, T(Ps) + Ps - 1) + Ps - taisr + Fis ~Pre(?§”) “taisk +
0 Jif Pgpe <M —1 .
NI Ppp. -t i (34)
r Prrs -taisr  ,if Pprs > M —1

Shsi
Pq

We can approximate the value of Pre(ﬁgs‘j) by , assuming a uniform distribution of values.

Similarly to the nested loops semijoin, if R comes sorted on the join attribute R.C;, we replace N2 with the

value of g ¢,, as computed in Eq. 29.

4.2.3 Antijoin in Pipeline

We observe the antijoin as a semijoin. Hence, the antijoin formulae are identical to those for the semijoin (Eq.32,
33, 34). The values of Pglg, Pglg for each antijoin algorithm must be computed by replacing Jr s by AJg s in the
respective equations.

5 Estimating the Tree Cost during Query Optimization

The proposed cost model is applicable on any parallel optimizer on shared-disk architectures supporting inter-
operator parallelism. Although we have focussed on bushy trees, the cost model is appropriate for any tree structure
supporting pipeline.

We estimate hereafter the execution cost of a bushy tree, using the formulae presented thus far. We then
calculate the processor demand. Finally, we describe the implementation of this cost model into the parallel query
optimizer presented in [21, 22].

5.1 Computation of Tree Execution Time

A bushy query tree contains projections, selections and joins. We assume that all SELECT-nodes on the same relation
have been merged into one node, in which all the restriction predicates are applied simultaneously. Similarly, joins
on the same couple of relations are merged into a single JOIN-node, where all join predicates but the first one are
applied as restrictions on each tuple produced by the first join. Beyond the root, which is always a PROJECT-node,
PROJECT-nodes are introduced below JoIN-nodes to sort their input for the merge join algorithm.

The execution cost of a bushy query tree conforms to the following pattern:

e Nodes on the same level of the query tree are processed in parallel. The cost of two sibling nodes is always
the cost of the most expensive one, as depicted in the maz(-) values of our formulae.

e Nodes belonging to the same pipe overlap partially and their cost is computed according to the formulae in
section 4.

So, the cost of the query tree is the cost of the most expensive pipe. However, in order to identify this pipe, the
cost of all branches of the tree has to be estimated in a recursive way: the cost of a query tree is comprised of
the time required by the root node to complete execution and of the time needed by the root’s child to produce
enough pages for its parent to start execution.

So, the root node specifies the parameter K for its child. Depending on the type of child node and on the
algorithm applied on it, P is estimated for the child node according to the formulae in section 4. Once this value
is estimated, the respective value per input relation and the cost of the node in a pipe can also be calculated using
the formulae of the same section.
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Recursively, the cost of the child node consists of the time it needs to produce enough output for its parent to
start, and of the time required for its own children to produce enough output for it to start. So, the formulae of
section 4 are applied recursively to the nodes of the query tree, until the leaf nodes are reached. We elaborate this
recursive operation with an example.

Example. Let the bushy query tree of Fig. 1, where the algorithm of each node is presented as a shorthand. “J”
denotes a join, semijoin or antijoin node, “P” a projection and “R” a restriction. All projections are assumed to
sort their input, including the root PROJECT-node. Let R;, S; represent the left, respectively right, relation input
to node 7. The inner relation for a nested loops or hash (semi)join is always the right one. The thick lines represent
the most expensive pipe of the tree, which however is not known until the cost estimation is completed.

Pl

J2(n|)

J3( 54)/ \ms

J5(ms) (hl)

12

R15(non-sorted)
RlO(sorted)

R8(non sorted) R9(sorted)

Figure 1: Example of a bushy query tree

Let T; denote the cost of node ¢. The cost of the tree is the cost of the root PROJECT-node, computed from Eq.
25 to which the cost of writing the output on disk is added:

T = TR1 + PR1 -t + Tinterm + Pproj—out “tdisk

where we assume that the output of the root node, being the query output, is written to disk.
The root PROJECT-node requires one input page to start execution. This page is produced by the JoiN-node
J2. This means that Tr, = T5. We use Equations 26 and 27, setting K = 1:

pnl
— 2 an — PRz PG
Ro RR 14V Ry LR

2

Assuming that neither of Ra, S is appropriately sorted and that Pg, does not fit in main memory, the cost of J2
is:

Ty = max(T5 + PRl -t Tu + Ps, - 1) + Np. - Ps, taisk (35)

The right relation input to J2 must become available in its entirety for J2 to start. Hence, the child of J2

must finish execution before J2 starts. Equivalently, the output relations of J3 and J4 must be produced in their

entirety.
The cost of J4 is therefore estimated from Eq. 30 with Plgij = Pg, and szj = Pg, as:

Ty = max(Ty1 + Pr, -tﬁ%,Tu + Ps, -tﬁ;4) (36)

Assuming that relation Ris input to P12 is not sorted and does not fit in memory, the cost of PROJECT-node
P12 is computed from Eq. 25 as:

Tis = Tis + Pr,, -t + Pr,, - lognr—1Pr,, - taisk

The child of P12 is a restriction. Its cost 1s computed from Eq. 24, where ﬁ}”{ii” = Ppg15. We assume that R5
does not comes sorted.
Ti5 = Pr,. -

Note that the factor Tg,, from the original Eq. 24 is zero, since Ris is a base relation.

The cost of the other tree branches can be computed similarly. Assuming that the maximum in Eq. 35 is
Ty + ... and that the maximum in Eq. 36 is T13 + .. ., the cost of the query tree is the cost of the most expensive
pipe, the components of which we have estimated thus far.
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For the estimation to be complete, the sizes of relations Ry, ..., R15 must be computed. The sizes of Ry1, R15
are known from the dictionary, since they are base relations. The sizes of the intermediate relations are computed
by applying the selectivity factors to the base ones. For example, across the pipe we have studied closely, the sizes
of the intermediate relations are as follows:

PR12 = les . SD(RL’H quz) Eq 9
PR4 = TR, 'PR11 Eq. 11
P54 = TR1o ~P312 Eq. 11
Pr, = JRS’SS"PLR:(IM'PG -Pp,-Ps, Eq.18
Ps,= Jn,s, PG- {45 . Pp - Ps, Eq.14
Pr, = Jrs, PG 1222 . Pp, - Ps, Eq.14
Poutput — TR, - JDR1 Eq 11

5.2 Processor Demand

The maximum number of processors used for the execution of the query equals the number of (compound) nodes
on the query execution plan, namely 1 root PROJECT-node, nr SELECT-nodes, np intermediate PROJECT-nodes,
jnA JoiN-nodes implying no wait point, and jnB JoIN-nodes implying one wait point, i.e. requiring that their
inner relation is avalailbe in its entirety before they start execution.

So, the number of processors needed is p < nr+np+jnA+ jnB+ 1. These processors operate across coalescing
pipes; the number of pipes varies with the structure of the optimal query tree produced by the optimizer.

The jnB children of the JoIN-nodes implying a wait point must complete before their parent can start execution.
The processors executing them may be assigned to tasks starting after the parent J0IN-nodes. The task-to-processor
mapping is either undertaken by the optimizer, as in [4, 12, 19], or assigned to a run-time scheduler, as in [7, 6].
Scheduling heuristics fall beyond the scope of this study.

5.3 Usage of the Cost Model for Parallel Query Optimisation

We have implemented the cost model described thus far within the framework of a parallel optimiser, intended
for the optimisation of large join queries. We outline this optimiser briefly hereafter; it is described in detail in
[20, 21].

The optimiser assumes a shared-disc architecture, the processors of which have private main memories and are
connected by a high speed network. The queries issued contain tens to hundreds of joins, as occuring in deductive
databases and in the coupling of databases with knowledge bases and expert systems [24]. For small join queries,
limited to a few tens of joins, a technique of exhaustive nature is employed [22], while iterative improvement is
used for larger queries [21]. The optimiser itself is implemented in a parallel way, so that its modules can run on a
parallel machine or on a LAN. Hence, the inherent parallelism of techniques like iterative improvement is exploited
to reduce the query optimisation time.

Our optimiser considers bushy query trees and exploits bushy and pipelined parallelism. Its output is a parallel
query execution plan, for which an adequate number of processors is assumed, so that the mapping of tasks to
processors i1s 1-to-1. This plan is forwarded to the system scheduler, which generates the appropriate schedule
according to the network configuration and the processors available at run-time.

The parallel query optimiser has been implemented on a GCel”™ 512-transputer machine of Parsytec and on a
network of Sun”™ workstations using the TCP communication protocol. The parallel query processor is currently
being ported from the original implementation platform (a 16-transputer Supercluster’™ of Parsytec) to the GCel
machine. The query processor relies on the underlying system software for the scheduling of the query execution
plan.

The search space of the query optimizer consists of all equivalent query execution plans. The cost model maps
this space on the set of real numbers. Due to this mapping, the “shape of the search space” 1s actually the curve of
the cost function for the values of the plans considered by the optimizer. As shown in [8, 9, 23], the cost function
has a crucial impact on the performance of the optimization strategy.

We have used the cost model described thus far to study the behaviour of the iterative improvement strategy
for large join queries. As shown in [22, 21], the performance of this strategy is very satisfactory when compared
to the exhaustive technique: the optimal plans it produces are very close to those of the exhaustive one, while its
optimization overhead increases polynomially with the query size. Experiments with different variations of iterative
improvement on the search space of our cost model are presented in [21].
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6 Conclusions

We have presented a model for the computation of query execution cost in parallel shared-disk database environ-
ments supporting pipeline. We have devised the cost formulae to calculate the cost of query operators in terms
of I/O and communication time, when executed in pipelined mode. We have then presented the mechanism of
estimating the tree cost in a recursive way from the cost of its components/nodes.

Query optimizers either generate alternative query execution plans and compare them to select the optimal
one, or build a single plan from a query graph according to a set of heuristics. Our cost model can be used by
both types of optimizers. The former type can use our cost formulae to estimate the execution time of alternative
plans. The latter type can apply our cost formulae on the query subplans incrementally constructed according to
the heuristics.

We have implemented our cost model into the optimizer presented in [20, 22, 21]. This optimizer adheres to
the first type described above, by generating alternative query execution plans using a reordering strategy. Two
strategies have been implemented, an exhaustive one [22] and a non-exhaustive one based on iterative improvement
[21]. The cost function has been used for the comparison of their performance and the study of the search space
of parallel bushy query trees.

Our future work includes an extension of the proposed cost model to support shared-nothing architectures
[3], whereupon problems of replication and partitioning must be considered, and the most appropriate processor
must be selected for the execution of each query operator. Moreover, we intend to incorporate information on the
available number of processors and on the network topology in our model. This information will allow us to better
estimate the communication cost of a query execution plan and the impact of multitasking on it.

Finally, we want to study the impact of the cost function on the search space of the optimizer. The cost
functions used in comparative studies like [24, 23] are considerably simpler than our own. We believe that the
complexity of the cost function, and the parameters of the problem it incorporates, affect the relative performance
of reordering strategies. Hence, we intend to compare several such strategies on the basis of our cost function.
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