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ABSTRACT 
Various forms of spreading activation has been used in a number 
of web systems, not least in the PageRank algorithm.  In our own 
work we have been using this as a technique for managing context 
over small and large ontologies, and both our own work and that 
in LarKC suggests that spreading activation has the potential to 
aid in reasoning over web-scale data sets including the growing 
set of linked open data resources.  Of particular importance is that 
spreading activation can be applied locally to a dynamic self-
selecting working set of an (practically) unbound linked data 
collection, as well as globally to the entire collection.  However, 
this potential does not come without problems, some concerning 
the nature of the algorithm on any large data set, and some more 
to do with the particular nature of linked open data.   

Categories and Subject Descriptors 
H.5.4 [Information Systems]: Hypertext/Hypermedia.       
I.2.4 [Computing Methodologies]: Knowledge Representation 
Formalisms and Methods – semantic networks 

General Terms 
Algorithms, Human Factors 
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1. SPREADING ACTIVATION AND WEB 
Spreading activation was originally proposed as a model of the 
way associative reasoning proceeds in the human mind 
(Anderson, 1983).   It has been used subsequently as a 
computational method in a number of areas (e.g. Crestani, 1997; 
Hasan, 2003; Liu, 2005), where some initial document/concept 

needs to be generalised to give a larger (weighted) number of 
related ones.  We have been experimenting for a number of years 
with spreading activation over both small and large ontologies 
(Dix, 2006; Katifori, 2008, 2010; Dix, 2010), and are in particular 
interested in the way that it can be used for context inference over 
the, for practical purposes, unbounded datasets of the web of 
linked open data (LOD) (Bizer, 2009). As well as our own efforts, 
a spreading activation plug-in is available for LarKC (2011) as 
part of its data selection phases, and also PageRank (Page,	
  1998) 
is a form of spreading activation. 

However, while spreading activation has many advantages and 
shows promise, there are various problems that arise: some 
concerning the nature of the algorithm on any large data set, and 
some more to do with the particular nature of linked open data.   
In this paper, we describe the range of types of spreading 
activation on ontologies with PageRank at one extreme (linear, 
global, input-independent) and our own work at another (non-
linear, local, input-dependent); we also explore some of the 
problems and how these interact with particular types and choices 
in the algorithm using both real and simulated data.  

2. WHAT IS SPREADING ACTIVATION 
Spreading activation is similar to artificial neural networks, except 
instead of individual neurons, the level of analysis is larger; for 
example concepts, documents, or web pages. When applying 
spreading activation to web ontologies the unit is an entity and the 
connections relations between them. 

The basic process is that each node receives some initial 
activation representing a stimulus (e.g. web page visited, or name 
in an email message).  Each activated node then passes on some 
activation to connected nodes, usually with some weighting of 
connections determining how much gets spread to each.  This is 
then iterated, either for some fixed time, or until the activations 
become stable. 

Mathematically this looks like: 

ai' =  λ ui +  µ f(  Σ wij × aj  ) 

Here, ai is the activation of node i, ai' the activation at the next 
iteration, ui is the initial activation, wij is the weight in the 
connection between node i and node j, and λ and µ are constants.  
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The function f is there because some form of threshold, or non-
linear transformation (e.g. logistic) is often applied to the 
incoming activation for a node.   A common value of wij is g/nj 
where nj is the number of outgoing connections from node j (fan 
out), and g is a 'gain' parameter.  

PageRank is a special case of this where f is linear, g=1 and µ=1-
λ.  Because of these values, PageRank is a conservative variant of 
spreading activation – the total amount of activation is always the 
same.  Being conservative makes an activation network well 
behaved, but it is limiting and our own brains are not 
conservative: for example, small initial inputs can cause large 
effects (e.g. a sudden movement at the corner of your eye may 
cause momentary panic).  A non-linear f is usually critical in non-
conservative networks otherwise they often have 'run away' 
feedback with some nodes getting higher and higher activation at 
each iteration (in linear case, and Eigenvalue greater than 1). 

Most choices of f have a finite asymptote creating a maximum 
value for the final activation of any node.  However, the 
behaviour at near zero varies.  Figure 1.i shows a classic sigmoid 
curve as found in many forms of neural network.  As well as 
having a maximum value it attenuates small values of activation, 
making nodes with small activation even less activated, rather like 
a increasing the contrast in an image.  In contrast, 1.ii is near 
linear for small values of input activation.  Figure 1.iii shows the 
same function as in 1.ii but with addition of a sharp threshold cut-
off, which means that if the level of input activation is low enough 
the node does not become activated at all.  A similar effect can be 
obtained by shifting the curve to the right. 

 
Figure 1. Different shapes of the transformation function f. 

3. WEB SCALE REASONING 
Some efforts in web-scale reasoning are focused on global 
application, using the whole (or significant portions) of the web 
(e.g. PageRank itself).  More often some level of selection is 
necessary whereby only some subset of the total web resources 
are used to tackle a potential query or problem.  This selection 
maybe deterministic based on the problem instance (Qasem, 
2007), or probabilistic (Fensel, 2007).  Usually this selection is an 
additional stage on an existing algorithm. 

Spreading Activation has the advantage that it can also be used 
locally. The running of the algorithm naturally defines a working 
set, which is in principle unbounded (it could access anything), 
but in practice finite (only some is actually accessed for any 
specific query/problem).  This is rather like a scholar in a large 
library, where all the books are available, but only those required 
for a particular purpose are accessed.  

To see how this works, imagine we have a small number of 
entities in memory, some of which receive initial activation.  We 
apply spreading activation for a few iterations, so that the 
different entities in memory receive differing amounts of 
activation.  We then take all entities that are sufficiently highly 
activated and access suitable web data resources to fetch entities 
related to them.  These new entities are then subject to further 
iterations of spreading activation, which might lead to yet more 
entities being fetched.  

Note that the shape of the transformation function f is critical 
here. If there is no threshold (Fig 1.i, Fig 1.ii) then while there is 
an effective working set of highly activated entities, in addition 
virtually all entities (those that have any connectivity whatsoever) 
will receive some, albeit very tiny, activation. 

It is necessary to limit this form of low-activation spreading on 
web-scale graphs. Because of this, whether or not the 
transformation function f used internally in memory has a 
threshold, we effectively add a threshold for externally fetched 
entities.  Furthermore, even when f has a threshold internally, we 
usually apply a higher threshold for external fetching to reduce 
the working set and thus decrease network accesses and improve 
efficiency.  In substantial experiments on the 20 million triple 
BBC data set (Dodds, 2009), we found that this additional 
threshold did not significantly affect the behaviour of the 
algorithm for normal ranges of parameters (Dix, 2010). 

4. ISSUES AND PROBLEMS 
While spreading activation shows potential, and has proved 
valuable in several application areas, there are several problems 
that need to be tackled. 

4.1 For Spreading Activation in General 
One key generic problem is that of 'greedy' nodes, portions of the 
graph of data, which become activated no matter what the input – 
a form of the runaway feedback possible in non-conservative nets.  
This is part of a general trade-off: on the one hand we expect the 
output of the algorithm to be determined by the initial set of 
activated nodes, whilst on the other we also expect the graph 
geometry to matter.  In PageRank there is no (or to be precise 
uniform) initial activation, it is purely the graph structure that 
matters, but in other cases we need to work to ensure these 
intrinsic structures do not swamp the initial input.   

In fact, this is a problem with neural-related algorithms in general 
and, in particular, led to the use of simulated 'dreaming' and 
'unlearning' in neural networks (Crick, 1983; Hopfield, 1983).  
The idea is that you give the network random inputs and apply 
learning algorithms as normal expect instead of increasing 
weights one decreases them; thus nodes that get activated through 
random (meaningless) inputs are penalised. 

There are various solutions to this problem. Some applications of 

spreading activation use a limited, and small, number of iterations, 

 
(i) transform non-linear near zero 

 
(ii) transform linear near zero 

Figure 2. Greedy node collection. 
 



this preventing runaway feedback, others include limits on the 
direction or distance activation can spread. 

The shape of the transformation function is again critical. Figure 2 
shows the activation of a small number of 'problem' nodes in two 
simulation experiments.  In each case a single node is initially 
activated and the final activation (after a large number of 
iterations) of the nodes measured.  The axis at the bottom 
(logarithmic) shows in initial activation level, from 1.0 to 0.001, 
the lines are the final activation levels for particular nodes.     In 
the first case, Fig 2.i, there is a non-linear transform function as in 
Fig 1.i; in this case as the initial activation decays so does the final 
activation of all nodes in the network.  However, in Fig. 2.ii, the 
transform function is linear near zero as in Fig 1.ii; in this case the 
final activation of these nodes stay high even when the initial 
activation is vanishingly small.  This does not mean that curves 
such as Fig 1.ii are wrong, but that other mechanisms may be need 
(in this case the weights used were non-conservative). 

4.2 For Web-Scale SA 
The greedy node problem was expected, but some problems only 
come to light in large-scale experiments.  As noted in section 3, 
we performed experiments with different threshold values for 
loading in new entities for web-scale spreading activation and that 
for normal ranges of parameters, this performed robustly. 

The means used to assess this was to measure final activation of 
entities with no (or very small) threshold and do the same with the 
target threshold and then plot the before and after activation.  For 
most applications what matters is the more highly activated 
entities, so the crucial thing is that adding thresholds does not 
affect these more highly activated entities.  In Figure 3 this is the 
top right-hand portion of the graph, which is nearly linear as 
desired.  

 
Figure 3. Unexpected increase in activation. 

At the bottom of Figure 3 are entities that had low (<0.02) 
activation in the baseline (no threshold) condition, but had zero 
activation when the threshold is applied, because they are not part 
of the working set.  This is again as expected.  What is surprising 
are the entities indicated by the arrows, which had higher 
activation in the condition where the threshold was applied. 

At first this seems counter-intuitive, swopping, for example, the 
function in Fig 1.ii for the one in Fig. 1.iii reduces the value of 
activation at each step and so surely would do so when applied 
iteratively?  The reason turns out to be due to the calculation of 
weights based on the fan-out of nodes. 

First of all take the condition with no threshold, so that we are 
effectively spreading activation over everything.  Imagine a case 
where a highly activated node A is of class C.  The class then 
becomes activated itself (we treat the is_a relationship in a similar 
way to other links).  The class C then passes on some activation to 

other members of the class, but as there are many such members 
only a tiny amount of activation is passed on.  

Now consider the same example, but with a threshold, high 
enough that the members of C do not get loaded purely because of 
C's activation.  Suppose that due to the activation of some other 
part of the graph a node B is loaded, which is a member of C. 
Without additional meta-information, it appears that C has just 2 
members (low-fan out) and therefore it passes on a substantial 
amount of its activation to both.  In such a case B can have 
substantially higher activation than when there was no threshold. 

In fact this condition only arose with particularly extreme values 
of other parameters and very high threshold, so while not a 
concern immediately, does suggest a situation that could 
potentially arise in other, more normal, situations. 

4.3 Asymmetry and Diversity 
In an RDF graph the links are directed and typed.  This creates 
more choices when applying spreading activation techniques.  

First for directedness, we effectively assume that there is an 
implicit inverse relationship and apply spreading in both 
directions.  Due to the different fan-out in each direction the 
weight for the two directions will usually be different.  This 
makes sense for context related applications; if person A is 
initially activated and person B is part of the same team, then we 
would expect B to have activation.  The alternative, to only follow 
links in one direction, would only activate the team, but not the 
member of the team.  However, following relationships in both 
directions has some drawbacks: it makes feedback loops more 
likely, and double counts when there is already an explicit inverse 
predicate.  The latter could be detected, but the former so far 
seems an inevitable consequence of the desired behaviour. 

The typing of the links can simply be ignored and all the links 
treated equally.  However, this does not lead to sensible 
behaviour.  For example, the UK has 60 million citizens and one 
Queen.  If we ignore the typing of links then if the UK is initially 
activated the Queen would get equally activated as every other 
citizen. Another option is to first divide the available activation by 
the number of types, and then to divide the activation within each 
type.  In the above scenario the Queen would get 1/2 of the spread 
activation and each other citizen 1/(120,000,000).  In other 
examples, it appears this biases a little too much towards the 
minority types and we are still experimenting with different 
alternatives. 

4.4 Linked Data 
The implicit working set of spreading activation means we can 
safely apply it to web-scale graphs and in particular the graph of 
the Linkng Open Data cloud  (Bizer, 2009).  Linked data 
guarantees that information about any entity can be found by 
dereferencing it.  However, the web of linked open data, is 'biased' 
towards subject to object relationships – dereferencing a URI is 
more like doing a SPARQL DESCRIBE, that is the triples for 
which it is the subject, and does not usually yield the triples for 
which it is the object.  Because many repositories can hold 
references to a single URI in general it can be hard to know when 
one has a complete view of the object.  

This bias interacts in different ways with spreading activation 
depending on the variant of the algorithm (e.g. one-way vs. two-
way spreading through links).  The problem noted in 4.3 arose 
when using full SPARQL access, but would be likely to be worse 
if using Linked Data dereferencing.  We do not have a solid 



answer to this at present, but assume we will need to include 
heuristics that effectively assume that knowledge of back links is 
partial, and correspondingly reducing their weight. 

Also, while the principles of linked open data (LOD) suggest that 
linkage should be through dereferenceable URIs, in practice one 
often has to look at values and some level of instance matching. In 
early Protégé implementations we in fact had activation on literals 
as well as entities.  This was removed, but it may be that it should 
be reinstated; this would mirror real life: when we think of a 
person we may well be reminded of someone completely different 
who has a similar name.  However, the problems of incomplete 
information would be if anything greater for literals than for URI 
resources. 

Some of the services appearing for back links and linked data 
search may begin to ease some of these issues, and mean that the 
LOD cloud can be treated more like a single graph that can be 
queried about any resource or literal. 

On the other hand spreading activation can potentially be used to 
aid search by selecting appropriate search services, even if these 
are not crawled by search engines (Dix, 2011).  Whilst existing 
search engine personalise search based on previous search history, 
more dynamically calculated context could allow web search and 
other applications to be tuned to the particular moment. 

5. DATA FORENSICS AND SIMULATION 
In section 4.2, we needed to make sense of an unexpected result.  
In an emergent system this may be difficult.  For example, 
following its televised win in Jeopardy, the developers of IBM 
Watson expect that it will take a year to work out why it answered 
certain questions wrong.  New visual analytics tools are required 
for this kind of task. 

As one way to investigate the issues we are combining in-the-wild 
applications to real large-scale data with simulations.  The real 
datasets allow us to find new issues (such as the fan-out related 
issue in section 4.2), whilst the simulations allow us to then study 
these issues in a more constrained environment.  This often 
involves having a small realistic core (taken from personal 
ontologies, for which we have known expected behaviour for 
given initial activations), and then adding an artificial structured 
extension.  The extension has a large number of nodes, but 
organised in a systematic and well understood topology, hence 
aiding empirical and formal analysis. 

Figure 4 shows two forms used to investigate greedy nodes and to 
generate the data shown in Figure 2.  In real simulation the 
'lollipop' of additional nodes may have many thousands of nodes 
around the central hub. Common sense would suggest that this 
large, but loosely connected group should have little effect on the 
relevance of elements on the core, the simulations allow us to 
stress test such hypotheses on different algorithm variants. 

 
   

 (i) star (ii) wheel
 

Figure 4. Simulated graphs. 
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