

An Active Blackboard for Service Discovery,
Composition and Execution

Abstract. Organisations nowadays are in the process of
developing network-enabled systems through which they
deliver electronic services to citizens, customers and
enterprises. Often, such services need to be combined in order
to cover all aspects of a service consumer’s life event. The
composition of different services though is usually left to the
service consumer, who needs to manually locate the individual
services and drive the process of obtaining results from some
services and feeding them as input to subsequent ones until all
relevant services have been executed. Although it would be
possible for organisations to improve their level of service
through provision of composite services, realizing thus the
concept of one-stop government, such facilities have not been
made yet widely available. This shortage stems partly from
financial considerations, since the frequent changes in the
regulatory framework of both the individual services and in
their interoperation requirements or in the technical aspects of
the service implementation render the development and
maintenance of composite services inexpedient and partly
from technical issues, since format or representational
incompatibilities in parameters and results hinder automation
developments. In this paper we present an active blackboard
architecture, which automates the task of service composition
based on the semantics of individual services and the data
dependencies between them. The blackboard incorporates
registries, which can be employed for facilitating service
discovery and an execution engine that arranges for dynamic
service composition and execution.

Keywords: e-government; electronic services; service composition;
blackboard architecture; semantics; ontologies

Introduction

Electronic government and e-commerce systems employ information and
communication technologies for offering to citizens and enterprises
business services in an on-line fashion, alleviating the need for physical
presence, speeding up transactions and saving resources, both for the
service provider and for service consumers [European Commission,

1999); (World Bank, 2001); (Rayport, 2003)]. Both these classes of
systems are highly prone to changes for a number of reasons: new services
need to be provided; existing services are improved; the regulatory
framework for service provision is modified, including changes to the
service inputs, outputs or internal processes; non-functional parameters of
services (quality, security, response time etc) are revised, triggering thus
maintenance activities for the relevant information system (European
Commission, 2003).
In order to address changes in their environment, software systems should
be able to evolve with time and adapt to the newly emerging requirements
[(Patel, N, 2003); (Hirschfeld, 2002); (Lohmann, 2004)], and provide
transparent accommodation of modifications and expose a high degree of
tailorability [(Theotokis, 1999); (Stamoulis, 2003); (Eardley, 2003)].
Besides the adaptability, tailorability and transparency aspects of
individual information systems, systems in the context of e-government
and e-business should possess some additional properties in order to
deliver high quality services to their users. Firstly, prospective service
users should be able to locate existing services in a manner that is focused
on the service consumer needs, rather than the systemic aspects (Dogac,
2002), as is the case with existing service discovery mechanisms such as
UDDI. Secondly, in many cases individual services need to be combined
in order to deliver full-fledged services to the service consumer. For
instance, the electronic submission of a tax return form should be
combined with e-banking services to cater for payment of due taxes; the
issuance of a marriage license would involve the issuance of birth
certificates for each of the spouses, which in turn could involve the
issuance of immigration certifications etc. In many cases, the services that
are involved are not directly linked; linkage is implicit through the fact
that the output produced by some service is consumed as input by another
one. Besides the issue of the identification of involved services, the issue
of their scheduling and execution monitoring must be addressed as well:
some executions could proceed in parallel (e.g. the two birth certificates in
the context of a marriage license), while other tasks include data
dependencies and should thus be scheduled sequentially. No provision is
also made by existing mechanisms to exploit validity periods of
documents produced by electronic services. For example, a tax clearance
certificate that is issued for a citizen at some point in time could remain
valid for the next three months, thus any need for the specific document
within the document validity period could be well-serviced by a copy of
the already issued one, removing the need for an additional service
execution. Finally, in existing approaches the service composition paths,
i.e. the services that need to be combined to form a composite service,
their data dependencies, scheduling parameters etc. have to be known a

priori and be explicitly coded in some executable specification
(programming language, workflow etc). However, a mechanism that
would derive the possible service composition paths that can lead to a
designated result would be of great value to service consumers. This
mechanism could also choose the most appropriate service composition
path, if multiple ones exist; appropriateness can be perceived in terms of
service availability, execution speed, current system load or other relevant
aspects.
In this work we present an architecture that employs the blackboard
paradigm [(Hayes-Roth, 1985); (Nii, 1986); (Corkill et al., 1987);
(Engelmore and Morgan, 1988); (Jagannathan et al., 1989); (Corkill,
1991); (Carver, 1997)] to address the issues identified above. The
proposed blackboard is an active one, i.e. it does not constitute a simple
repository of information available to the authorised entities; rather, it
encompasses mechanisms for deducing service composition paths, driving
the process of composite service execution, maintaining a cache of
documents and performing transformations where appropriate. The
blackboard employs an ontology for presenting a semantically rich view of
the service pool to prospective service consumers.
The rest of the paper is organised as follows: The next section presents
related work and background information for blackboard architectures and
service composition. Afterwards, the proposed architecture is outlined, its
components are identified and their functionality is discussed and
exemplified through real-world scenarios. Finally, conclusions are drawn,
the main contributions of the proposed solution are recapitulated and
future work directions are drawn.

Background and Related Work

Blackboard systems have been used for more than two decades (Erman,
1981) as a highly structured, special case of opportunistic problem solving
(Nii, 1986). Within a blackboard model, domain knowledge regarding the
inputs, outputs as well as intermediate and partial solutions needed in the
context of problem solving need to be well-organised, so as to be
exploited by knowledge modules accessing the blackboard to derive the
problem solution. The blackboard paradigm for problem solving supports
the incremental problem solving (Carver and Lesser, 1994) in the sense
that the process starts off with only the input data available, then some
knowledge module derives an additional piece of information from it and
makes this piece available within the blackboard space; the newly
produced information can be used (together with the initial input data) by
all other knowledge modules that will in turn produce additional

information, which will be again incorporated in the blackboard space.
Thus, various independently working modules contribute jointly to the
problem solution. The blackboard paradigm has also been used for real-
life applications such as the PLAN component of the Mission Control
System for RADARSAT-1 (Canadian Space Agency, 2005) described in
(Corkill, 1997)
Service composition, on the other hand, has insofar proceeded by using
pre-determined execution scenarios in order to model composite services.
One such example is the eGov project (Tambouris, 2001), in the context of
which simple services can be combined to form composite, life-event
oriented electronic services. The synthetic task is undertaken by the
composite service developer, who must first discover the simple services,
import them to the development environment and finally arrange the flow
of execution and the linkage of inputs and outputs. In this paradigm, if the
inputs, the invocation method or the outputs of any of the simple services
change, the composite service developer should accordingly amend the
composite service model. Similar approaches are taken by technological
frameworks, such as (Bunting et al, 2003).
The rigidity in the execution path specification is relaxed in the model
described in (Casati, 2000), where the composite service developers
prescribe some composite service schema in terms of flow structure,
definition of service, decision and event nodes, data processing, and
transactional regions. The prescribed schema may be modified in run-time
(subject to authorisation constraints), to cater for variations to any of the
composite service schema elements. This work additionally introduces
consistency rules, which are able to verify that changes that have occurred
either in the composite service schema or in some constituent service have
rendered the composite service to be invalid; however still human
intervention is required to remedy these cases.
In (Lepouras et al., 2005), a first version of the active blackboard
architecture was proposed as a means for web services composition. In
this paper we extend this first approach by introducing rich vs. simple
replies, additional semantics – most important of them being the updates
and if-updated, that correspond to event-condition-action rules – and a
cache manager scheme has been introduced to the system. Also issues that
arose during the implementation have been resolved and are discussed in
the implementation considerations section.
In (Peristeras, 2006) the authors present a service metadata representation
and service composition model – namely GEA Service model – which
shares functionality with the model presented in this work and in
(Lepouras, 2005); however this model does not clearly distinguish
between generic service provisions and concrete service implementations;
this feature is necessary for avoiding duplication of information and

inconsistencies among service implementation. Moreover, advanced
features such as rich vs simple replies and caching of intermediate results
are not considered. The GEA Service model has been implemented using
semantic technologies within the SemanticGov project [(Loutas, 2007)]

The Active Blackboard Architecture

This section describes the proposed approach. Firstly, the overall
architecture is described in terms of components, their functionality and
interoperation. Subsequently, for each component, a detailed description is
given and its key aspects are discussed; implementation considerations for
the different modules and the data space are also outlined. Real-world
examples are given in the text to exemplify the use of the platform.

Overview of the Active Blackboard Architecture

The active blackboard architecture encompasses functionality both for
electronic service providers and consumers. Electronic service providers
are able to register their services with the blackboard, making them thus
available for invocation to service consumers, either directly indirectly. A
service is invoked directly if a consumer asks explicitly for it; indirect
execution occurs when a service consumer requests service A and this
needs an input produced by service B. In such a case the service execution
engine arranges so that service B is executed to produce the desired result;
this arrangement is transparent to the service consumer, with the possible
exception of further input required by service B (discussed in detail later
in this section). The process of service provision and consumption is
semantically enriched through an ontology, which covers both services
and data managed by them. In order to further enhance service
interoperability, the active blackboard system includes the provision for
executing methods that transform instances of ontology nodes to instances
of other ontology nodes. Finally, the active blackboard is able to keep
copies of service parameters and results within a local cache, enabling
therefore the reuse of results which are still valid, in order to minimise
processing and communication and optimise the overall turnaround time.
The overall architecture of the active blackboard is illustrated in Figure 1.
In the following paragraphs, the modules of the active blackboard are
described in detail.

Service
registrar

Ontology
registrar

Cache
manager

Service
 execution

Transformation
registrar

Service
metadata

Service and
data ontology

Transformation
methods

Bl
ac

kb
oa

rd
 s

pa
ce Data

elements

Figure 1 – The active blackboard architecture

The ontology registrar

The ontology registrar manages the service and data ontology, which is
the semantic infrastructure for service classification, discovery and
interoperability. The ontology models the basic concepts related to
services, which are:

1. the organisations that provide electronic services
2. data passed as parameters to services and their structural and

semantic descriptions
3. services offered by organisations and their semantic descriptions

Figure 2 depicts part of the service and data ontology, as modelled using
the KAON tool (KAON, 2004). The rectangle nodes are concepts, which
are used to model classes of objects, while the rounded rectangle nodes are
instances of concepts, which map to individual objects. For clarity reasons
the figure only shows the is-a relationships between concepts and between
concepts instances (e.g. Ministry of Finance is-a Ministry is-a
organisation); more relationships between concepts and instances are
generally established, the most important of which being the offered-by,
managed-by, consists-of, produces, is-related-to, updates and if-updated
relationship types. The offered-by relationship links a service instance
with an organisation concept or instance, and dictates which organisation
or class of organisations has the authority to offer the specific kind of
service. For example, the “Birth Certificate” service instance node has two

emerging links of type offered-by connecting it to the “Municipality”
concept and the “Ministry of Internal Affairs” concept instance (any
instance of the municipality concept can issue birth certificates and the
Ministry of Internal Affairs can also issue birth certificates). The
managed-by link type connects an organisation to (a) instances of the
service concept (b) instances or sub-concepts of the “Data” concept and
(c) instances or sub-concepts of the “Organisation” concept. Such a link
indicates which organisation is administratively responsible for the service
or datum and can thus define further structural properties of the related
node. For example, the Ministry of Internal Affairs is administratively
responsible for the “National Id No” instance and can thus define that the
valid format of a national identity number is one or two characters
followed by six digits. Note that the administratively responsible
organisation is also responsible for establishing the offered-by links.

Figure 2 – Part of the service and data ontology

The consists-of relationship type provides the ability to model cases in
which a data type is composed of a number of smaller data elements. The
consists-of relationship type has a single source and multiple targets,
indicating that any instance of the source node has all its target nodes as
elements. For example, a consists-of link emanating from the
“International Id” node and pointing to the nodes “National Id” and
“Country” states that any international identity can be modelled (in
addition to the Passport, which represents an international identity by
virtue of the is-a relationship) through a pair of a “National Id” and a

“Country”. Note that a “National Id” may be represented either as a
“National Id No” or a “Social Security No”.
The produces relationship type links a single service to the document it
produces. The node to which the link arrives must be a descendant of the
“Document” sub-concept of the “Data” concept. For example, the
“Marriage License Issuance” service is linked with a produces-type link to
the “Marriage License” document.
The is-related-to relationship type emanates from a single sub-concept or
instance of the “Data” concept and arrives to one or more descendants of
the “Data” concept. The purpose of this relationship type is to link the
result of a service (or a data element) with a set of data values that
uniquely identify this result (or the data element) modelling thus
functional dependencies (Halpin, 2001). For example a “Personal
Address” descendant of the “Data” concept is linked to the “National Id”
node to signify that a specific person always has a specific address; a
“Birth Certificate” document (result of the “Birth Certificate Issuance”
service) is also linked via an is-related-to link to the “National Id” node to
designate that the birth certificate pertains to the citizen whose identity is
used in the “Birth Certificate Issuance” service invocation. Similarly, a
“Car Insurance” document can be linked to a “National Id” and a “Car
Licence Plate No” to designate that the car insurance document is
associated with the specific combination of driver and car. It is possible
for a is-related-to relationship to point to a specific descendants of the
“Data” concept more than one times: for example, a “Marriage Licence”
document points to the National Id concept twice (and once to a timestamp
concept), since it is uniquely identified by the two persons that will be
married (and the timestamp).
The updates relationship emerges from a single descendant of the
“Service” concept and point to a single descendant of the “Data” concept,
indicating that the service updates the information represented by the
specified data construct. For example, an “Announcement of Move”
service is linked to the “Address” node to indicate that the service
modifies an address. The entity whose address is modified can be traced
using the is-related-to relationships emerging from the datum, if any.
Conversely, the if-updated relationship starts from a single descendant of
the “Data” concept and points to a single descendant of a service to signify
that when a specific datum is updated, the designated service should be
invoked. Effectively, the updates and if-updated relationships model data-
triggered service executions, removing the need for a service to explicitly
call other services that need to be executed in specific situations. All
appropriate service executions are automatically scheduled by the service
execution module.

Each node in the ontology has a number of attributes that describe various
aspects of it. An instance of a data sub-concept has attributes dictating the
valid format(s) for this element, a list of allowable values (e.g. the “Day of
Week” node will list the days from Sunday to Saturday), minimum and
maximum bounds, the confidentiality level of the datum (e.g. publicly
known vs. strictly personal), multilingual labels for its description etc.
Attributes for organisations include descriptive data (e.g. physical
location, phone and fax numbers) and identification credentials (user
names and passwords, IP addresses, SSL keys etc) which are used by the
registrar services to validate that connecting entities as acting on behalf of
the specific organisation. Finally, attributes for sub-concepts and instances
of the “Service” concept include the confidentiality level, a time to live –
i.e. for how long after its issuance by the respective service its result
remains valid and an indication whether the service result is reusable, that
is whether results of the specific service may be retained and used as input
in a subsequent service invocation. The latter two properties are exploited
by the cache manager upon service execution.
The ontology can be modified and queried through the ontology registrar
module. Organisations wishing to modify portions of the ontology that
they are responsible for (as indicated by the is-managed-by relationships)
submit the relevant requests to the ontology registrar. Each request is
complemented by appropriate credentials to identify the submitting entity
as acting on behalf of the organisation. The service registrar validates the
credentials and verifies that the affected ontology portion is actually
managed by the requesting organisation before honouring the request. The
ontology may be queried by prospective service consumers to determine
whether a specific service is listed in the ontology, as a first step towards
service invocation (further steps are described in the following
paragraphs). Additionally, governmental or third party portals may query
the ontology to extract services listed in the ontology, in order to present
their users with lists of available services. Note that such a service list may
be simply alphabetically sorted, categorised according to the responsible
(or issuing) organisations, or matched against some external classification
scheme, e.g. a life-event ontology maintained by the portal. A further
option for portals is to query the available documents in the ontology and
display them to their users. When the portal user selects the desired
document, the portal may reversely traverse the produces links to locate
the service(s) that produce the selected document.

The service registrar

The service registrar manages the service metadata repository, which links
the semantic representations of services within the ontology with concrete
implementations that actually deliver a service. Organisations that offer a
service should register the service to the service registrar providing the
following information:

• a link of type implements to a descendent of the “Service” concept
in the ontology, which designates which abstract service this
concrete implementation realises.

• zero or more links of type uses; each link points to a single
descendant of the “Data” concept. These links actually model the
input data that the service needs for its execution, which may be
either values that should be entered by users or documents that will
be produced as the result of execution of other services. In such
cases, it is mandatory for the links to be labelled using a role
name, in order to allow the system to distinguish the inputs. For
example, the “Marriage License” service includes two links of type
uses to the “Birth Certificate” document indicating that two birth
certificates should be provided as input to the marriage license
service (one certificate per spouse); one of these links will be
tagged with the role name “husband”, while the other link will be
tagged with the role name “wife”.

• a condition, which must evaluate to “true” to make the service
eligible for delivering the abstract-level service of the ontology.
Consider for example the birth certificate service: the Ministry of
Internal Affairs may issue a birth certificate for any citizen of the
country, since it stores information for all citizens in its database.
A municipality, on the other hand, has no such ability since its
database only stores information regarding its residents. In this
case, the Ministry of Internal Affairs will register its service
implementation with a condition equal to “true” (the
implementation is always eligible to deliver the service), while the
municipality of Paris will register its implementation with a
condition Address.City = "PARIS". The Address appearing in the
left hand side of the condition is a descendant of the “Data”
concept, to which a uses link is specified.

• a specification of how the service can be called. The actual calling
method depends on the service implementation: for services
implemented as web services (Newcomer, 2002), a WSDL
specification can be provided; for services delivered through RMI
(Sun Microsystems, 1999) the name of the remote object, the
interface name and method should be listed etc.

Optionally, the service registration may be complemented with additional
information regarding the service operation, such as cipher suit
specification for encryption, authentication credentials that must be
presented upon service invocation, hours/periods of service operation etc.
The service registrar also allows the specification of non-functional
metadata, such as anticipated turnaround time for service requests, service
uptime, communication line speeds, whether the service is idempotent (i.e.
it can be executed multiple times without any side-effect) and so on. These
metadata can be exploited by the service execution engine to formulate an
optimal execution plan for delivering the service to the citizen, in the
presence of multiple service providers.
Note that the arrangement presented above allows for distinct concrete
implementations to use different input data for producing the same result.
For example, one implementation of the “Enrolment in Higher Education”
service offered by the Ministry of Education may accept as input a
“Higher Education Examinee Number” and perform all actions based on
the examination data in the ministry’s database, while some other
implementation offered by a University may require the student’s identity
number, name and surname and the department to which the student will
enrol. Both service implementations produce an “Enrolment Certificate”
document as output.
Similarly to the ontology registrar, the service registrar verifies that
appropriate credentials are provided within the request to identify the
submitting entity as acting on behalf of a specific organisation and that
this organisation is allowed to deliver the service.

The transformation registrar

The transformation registrar manages the transformation method
repository, whose entries specify how certain descendants of the “Data”
concept in the ontology can be transformed to some other descendants of
the “Data” concept. These transformations generally include database
lookups and filling-in of default values, and are provided for the
convenience of the end users of services. Consider for example the case
that some service of the Ministry of Health requires the social security
number of the citizen, for identification purposes, however the citizen only
has the driver license at hand. In the presence of a suitable transformation
method, the service user could enter the driver license number and this
would be mapped to the social security number, thus the service would
proceed. Similarly, the citizen’s identity number and country could be
derived from the passport number, while an Austrian VAT number can be
transformed to a European VAT number by prepending the constant string

“AT”. Such transformations can be automatically performed by the service
execution module.
For a transformation to be registered to the blackboard, the following
information should be provided to the transformation registrar:

• one or more links of type uses to descendants of the “Data”
concept

• one or more links of type computes to descendants of the “Data”
concept

• a specification of how the transformation will be performed.
The semantics of such a registration request is that all the data pointed to
by the uses links will be used to compute all the data pointed to by the
computes links, using the designated method. For example, the
transformation from a driver license number to a social security number
will be registered using a single uses link, pointing to the “Driver Licence
Number” instance within the ontology and a single computes link,
pointing to the “National Id No” instance within the ontology; the
transformation from a passport number to identity number and country, on
the other hand, will be registered using a single uses link (to the
“Passport” instance) and two computes links (to the “Country
Abbreviation” and “National Id No” instances). Similarly to the service
registrar, the actual implementation of the transformation method may be
provided as a WSDL specification, RMI parameters etc. For simple
transformations (such as providing default values, extracting portions of
strings etc), the transformation registrar allows the specification of the
transformation via a simplistic “language”, that allows such operations to
be performed. For example, the aforementioned transformation from an
Austrian VAT number to a European VAT number can be specified as:
concatenate("AT ", Austrian_VAT_Number)
(The Austrian_VAT_Number is the ontology instance pointed to by the
uses link.)
This provision allows for minimising the overall service execution time,
since processing such a transformation rule is far more effective than
invoking an external to the blackboard service.
Again, the request must be complemented with appropriate credentials to
verify that the requestor is acting on behalf of a valid organisation.

The service execution module

The service execution module is the entry point provided by the
blackboard for service consumers. Having obtained a valid service name
for the blackboard by querying the ontology registrar, a service consumer
may submit a request to the service execution module asking for this

service to be executed. Such a request should be complemented with any
appropriate parameters that are required by the service. The blackboard
will undertake the task of invoking the designated service (and, possibly,
any other services that produce intermediate results or transformations to
perform data coercions), and will return the result to the service consumer;
under this execution scheme the service consumer interacts only with the
blackboard and needs not be aware of the actual steps taken for the request
to be honoured. One issue that consumers may face, however, is how to
determine the parameters that should be provided to the service for the
desired result to be obtained. Before listing the options available to clients,
let us discuss which data sets can be used for a particular service S to be
successfully executed in the context of the blackboard.
Recall that a single service within the ontology can have multiple concrete
implementations, as registered to the service registrar. Each of these
concrete implementations can define its own input parameters via the
uses-type links to descendents of the “Data” node in the ontology. If an
input parameter is a descendent of the “Document” sub-concept, it should
be produced as the result of some other service execution, whereas other
input parameters (non-descendents of the “Document” sub-concept) are
directly provided by the service consumer.
The simplest case of service invocation is when a single concrete
implementation exists and none of its input parameters is a descendent of
the “Document” sub-concept. In this case, the service consumer needs to
provide values for all input parameters of the unique concrete
implementation of the service. For the cases that a uses link points towards
a sub-concept and not an instance, the service consumer may provide any
of the instances which are descendents of the sub-concept (e.g. if the Birth
Certificate Issuance service requires a National Id datum as input, then
either a National Id No or a Social Security Number value may be
provided). Finally, if the ontology node corresponding to an input
parameter is the source of a consists-of link, then the service consumer
should provide values for all the targets of this link.
The transformations registered to the blackboard can be exploited in the
context of a service invocation as follows: if some input parameter set
includes data of types A1, A2, …, An which can be computed via
transformations from data of types B1, B2, …, Bm, then the inputs to the
transformations rather than the data directly required by the service can be
provided as inputs, and the service execution module will arrange for the
proper transformations to be applied, prior to the service invocation. For
example, if the tax certificate issuance requires as input a VAT number
and a date and there exists a transformation that computes the VAT
number through the Social Security Number, then the service may be
invoked providing a Social Security Number and a date as input

parameters; the service execution module will use the registered
transformation to convert the Social Security Number to a VAT number,
which will be finally passed as an input parameter to the service, along
with the value for the date that the service consumer has originally
provided.
Figures 3 and 4 illustrate XML documents that correspond to service
invocations. Note the usage of the “tag” attribute in figure 4, which is used
to distinguish the role of each of the two parameters of the same type. The
value of the “tag” attribute should match the tag on the “uses” link
specified in the service registration.
<requestedService>Birth_Certificate_Issuance</requestedService>
<inputs>
 <input type="National_Id_No">
 <value>X456789</value>
 </input>
</inputs>

Figure 3 – Invocation of the “Birth Certificate Issuance” service
<requestedService>Marriage_Certificate_Issuance</requestedService>
<inputs>
 <input type="National_Id_No" tag="husband">
 <value>X456789</value>
 </input>
 <input type="National_Id_No" tag="wife">
 <value>Y567890</value>
 </input>
</inputs>

Figure 4 – Invocation of the “Marriage Certificate” service
In the presence of multiple implementations of a service, the service
consumer may provide input parameters that are adequate for any concrete
implementation. Upon reception of a service execution request, the service
execution module will determine the concrete implementation that can be
invoked using the provided values, taking additionally into account the
condition associated with each concrete service implementation. If the
supplied input parameter values render some condition(s) to evaluate to
false, then the associated concrete implementation(s) will not be further
considered by the execution engine in the context of honouring the
specific request.
A more complex case is when some input(s) of the requested service S is a
descendent of the “Document” concept in the ontology. For each such
input, a service S’ needs to be invoked to produce the document, which
will be subsequently used as input to the service requested by the service
consumer. For the invocation of S’ to be possible, the request submitted by
the consumer should provide not only the inputs required by the directly
invoked service S (except for the inputs which are descendents of the
“Document” concept), but also all inputs that are needed by service S’.

Thus, if the services listed in Figure 5 exist, an invocation of the “Passport
Issuance” service should provide a value for the “National Identity Card
Number”, which is directly needed by the invoked service, plus a value for
“Address”, which is needed by the “Residence Certificate Issuance”
service that will produce the “Residence Certificate” required by the
“Passport Issuance” service. Note that the value for “National Identity
Card Number” needs to be provided only once, and the execution module
will arrange so that the value will be passed to both service executions.
Such a chain of executions may extend to any number of levels.
Transformations may again be employed for deriving the values of input
parameters, as described for simple service invocations.
Service Inputs Output
Passport Issuance National Identity Card Number

Residence certificate
Passport

Residence Certificate
Issuance

National Identity Card Number
Address

Residence certificate

Figure 5 – Services that must be sequentially invoked
If a service consumer does not know which parameters are needed for
invoking a specific service, a relevant query may be submitted to the
service registrar module. In such a query the desired service name will be
stated and a flag can be providing indicating that a rich reply is requested.
A rich reply will list all parameter combinations that can be supplied to the
service, while a simple reply will only provide one parameter set including
the types directly pointed to by the relevant uses links. If multiple
implementations for a service are provided with distinct parameter sets, a
simple query will return the parameter set for an implementation without
an associated condition; if all implementations have an associated
condition, one parameter set will be chosen arbitrarily. The option for a
simple reply is given to facilitate the work of service consumers that do
not include extensive parsers or logic to handle rich replies. Figure 6
presents an example for a rich reply to a service parameter query, whereas
Figure 7 presents an example for a simple reply.
<service>Birth_Certificate_Issuance</service>
<inputParams>
 <option>
 <param type="Social_Security_No" base_type="xs:integer"/>
 <param type="National_Id_No" base_type="xs:string"/>
 <param type="Passport_No" base_type="xs:string"/>
 </option>
</inputParams>
Figure 6 – Rich reply for parameters to the Birth Certificate Issuance
Service

<service>Birth_Certificate_Issuance</service>
<inputParams>
 <param type="Social_Security_No" base_type="xs:integer"/>
</inputParams>
Figure 7 – Simple reply for parameters to the Birth Certificate
Issuance Service
Note that both parameter queries and service invocations presented in the
figures above make use of the XML syntax, and service consumers need
to be aware of this protocol to interact with the blackboard. Since
numerous service consumers exist that directly support the web service
paradigm only, the blackboard arranges so that for each available service
an appropriate WSDL file is created and a mini-stub is generated to accept
invocations for the service according to the web service paradigm. All
available services are also registered with a UDDI repository, which
allows service consumers that are not aware of the blackboard
communication protocol but are compliant to the standard WS
specifications, to locate and subsequently invoke the services offered
through the blackboard.
Event-condition-action triples, such as the paradigm presented in
(Papamarkos, 2003), can be an alternative formal model for the execution
module of the blackboard architecture. Event-condition-action modelling
allows for direct use of existing validation engines, but lacks the high-
level semantics offered by ontology modelling. In the paradigm presented
in (Papamarkos, 2003), the event-condition-action rule for creating a
document of type dtype can be expressed as follows:
ON REQUEST (dtype, parameter_set)
PREPARE REQUEST(uses1, parameter_set), REQUEST(uses2, parameter_set), …
IF usesi_condition
DO EXECUTE SERVICE (concrete_implementation, uses1, uses2, …)
The event in this rule is the submission of a request for a document of type
dtype, providing a set of parameters parameter_set, which may be either
documents or date values. The IF clause is the condition part of the rule
and corresponds to the guard condition associated with the concrete
implementation, which is finally invoked as specified in the DO clause
(action part of the rule). The PREPARE clause is a preparatory action
specification, modelling the use of the parameters provided by the service
consumer to produce the documents and/or values actually needed by
concrete implementation to be invoked: for example, if the provided
parameter_set contains a social security number, but the concrete
implementation requires a VAT number, then the relevant PREPARE
clause will be
PREPARE REQUEST(VAT_number, {SSN})
to compute the VAT_number needed for the concrete service invocation.
Notice that the preparatory step is itself a REQUEST event, firing thus

additional ON REQUEST rules. Instead of an EXECUTE SERVICE
specification, the DO clause may contain an EXECUTE
TRANSFORMATION specification, which is functionally equivalent but
instead of using a service to do the computation, it employs an appropriate
transformation.
Two more forms of event-condition-action rule are needed to model the
operation of the execution module. These forms are:
ON EXECUTION (service, parameters)
DO UPDATE (datum1, parameters), UPDATE(datum2, parameters), …
and
ON UPDATE (datum, parameters)
DO EXECUTE SERVICE (service1, parameters), EXECUTE SERVICE (datum2,
parameters), …
The first rule form actually models the “updates” relationship of the
ontology, stating that the designated service updates the data specified in
the DO clause. The update method need not be listed here, since it is
already coded in the service implementation; this clause actually registers
an UPDATE event for the datum in the event-condition-action
environment, which triggers the firing of the respective ON UPDATE
rules, modelling the “if-updated” relationship of the ontology. When such
a rule is fired, the services listed in its DO clause are executed, fully thus
supporting the data-driven service executions presented above.

The cache manager

In general, documents and certificates produced by public authorities have
a period of validity, within which they may be used in transactions. For
example, a tax clearance certificate, attesting that the citizen has no due
taxation debts, may be valid for three months after being issued and within
this time period it may be used in the context of any transaction with the
government. The blackboard exploits this property of the documents, in
order to re-use documents issued by services, avoiding thus service re-
execution and obtaining benefits both in terms of reducing overall system
load and minimizing total service delivery time.
In order to achieve these goals, the cache manager cooperates with the
service execution module as follows:
1. When the service execution module invokes some service that

produces a document, it examines the service and data ontology
metadata to determine whether the document is cacheable, i.e. whether
it can be stored and re-used. If the document is cacheable, the is-
related-to links emanating from the document node within the
ontology is traversed to determine the data elements that have been
used as parameters to the service and uniquely identify the document

(e.g. a birth certificate will be linked through an is-related-to link to
the National_Id_No ontology node). The document along with the
values of the parameters, are presented to the cache manager for
storage.

2. The cache manager accepts the document and the related parameters
and extracts from the service and data ontology the time to live for the
specific document type. The cache manager stores in its database the
parameters, the document and the document expiration time, computed
by adding to the current instant the time to live extracted by the
ontology.

3. When a service needs to be invoked to produce a document, the
service execution module first checks whether such a document exists
in the cache by presenting the identifying parameter values and the
document type to the cache manager. If a document of the given type
and associated with the specific parameter values exists in the cache,
then the cache manager verifies that the document remains valid by
comparing the document expiration time with the current time instant.
If the document is valid, it is returned to the service execution module,
which will then use it directly, instead of invoking the service that
would produce the document. If however such a document does not
exist or has expired, service invocation is actually performed.

In order to optimise cache usage, the cache manager periodically
scrutinises the cache to locate documents that have expired and removes
them from the cache. Such a purging procedure will free up cache space
for new documents to be stored. If the space allocated to the cache fills up,
then the cache manager employs a cache replacement algorithm to free up
space for new documents; standard cache replacement algorithms
[(Wessels and Claffy, 1997); (Wang, 1999), (Zhu, 2001), (Vassilakis,
2002); (Wessels, 2004)] may be used for this purpose, but the document
expiration time should be taken additionally into account (e.g. documents
expiring in the next few days may be considered as prime candidates to be
removed from the cache).

Implementation considerations for the blackboard architecture

The overall blackboard architecture encompasses a number of distinct
modules that access a shared information space, hosting all the
information needed by the modules (service and data ontology, service
metadata, transformation methods, and data elements). Since the modules
are operating concurrently, access to the shared information space should
be synchronized, in order to avoid cases that some module reads data that
has been partially updated by some other module (note that in the

proposed architecture, each type of information within the blackboard is
updated by a single module, thus lost update concurrency hazards (Date,
1994) are not bound to occur). It is also desirable for the shared
information space to be able to accept registrations to events from
modules and automatically produce notifications when such events take
place. This would enable modules to promptly react to certain events. For
example, if the service execution module is using an item from the cache
and the cache manager determines that the item has expired and removes
it, the removal of the item from the cache space could result to a
notification for the service execution module to cease using the expired
item. Taking these into account, JavaSpaces (Freeman, 1999) has been
chosen for the implementation of the shared information space, since it
provides space operations, distributed events, leases and transactions.
Within the execution of any single blackboard module, certain tasks may
need to be performed concurrently. This is particularly true for the
following cases:

1. the service execution module, which undertakes the task of
accepting requests and performing the activities required for
fulfilling them. Since each individual request may require
considerable time to be completed, it would be unacceptable to
queue requests and process them sequentially. The service
execution module may also employ concurrency in the context
of a single request (a) in the case that two concrete service
invocations have no interdependency (i.e. neither of them
requires directly or indirectly the result of the other to proceed)
and (b) in the case that alternative paths for the computation of
some result exist and an optimal turnaround time is called for, all
paths may be executed concurrently and the first result obtained
can be used for subsequent operations.

2. the cache management module may service requests for storage
and retrieval of documents in a synchronous manner, while a
concurrent task may sweep through the cache to locate
documents that have expired and remove them from the cache.
This task may also remove rarely used documents from the
cache, to guarantee that cache storage space is always available
for new documents.

In both these cases, the multi-thread execution paradigm (Butenhof, 1997)
can be adopted to provide the required parallelism. The service execution
module may spawn a new thread to service each incoming request,
allowing thus activities pertaining to different requests to be executed
concurrently. Alternative paths may also be handled through the multi-
thread execution paradigm, with a separate thread being created to execute
each path. When the first thread signals (through an appropriate

semaphore) that the result has been computed, the main thread for the task
collects the result and terminates the threads computing the remaining
paths, in order to save system resources. Similarly, the cache manager may
create a low-priority thread to handle identification and removal of expired
or rarely used documents, while requests for storage and retrieval of
documents may be handled by either a single high-priority thread or by
multiple, high-priority threads. Threads may be finally used by the
execution module, when services need to be invoked as a result of the
presence of “if-updated” type relationships; tasks that are specified to be
carried out when some datum is updated may be assigned to separate
threads, which will proceed asynchronously to any other task. In
environments with high workload, the registrars may also employ multiple
threads (create a thread for each incoming request) to provide better
turnaround time. Note, also that multithreading reduces the possibility of
bottleneck in the execution module.
If no multithreading is available, then in order to avoid bottlenecks at the
execution module the following solution may be opted. The blackboard
decides on the execution plan, and then creates a jar file containing the
execution plan and sends it to the client to be executed. This is also a
solution for cases where the client has been authenticated to use a certain
service (e.g. paying through an e-banking system) and the blackboard
would be considered as an alien, possible dangerous third party trying to
impersonate the client, thus rejecting it. In any case, it should be stressed
out that the blackboard only composes and coordinates the execution; it
does not perform the actual execution of the services.
We haven’t opted for a distributed implementation of the service
composition and execution, as this way a number of issues, such as
concurrency, recovery, etc, would be more complicated, with no apparent
performance gain, as we just explained.
One more implementation issue has to do with the detection and resolution
of circles that may exist in the service/data ontology. Under normal
circumstances no circles should exist, as only administrative procedures
are recorded in the blackboard, and for all citizens’ sake circles should not
appear in such a procedure. Note also, that procedures in the ontology are
not defined algorithmically but using a data-driven approach, so the
probability that the administrators should erroneously create a circle is
minimised. In any case, the simple and working approach the UNIX
system uses to detect and resolve circles when dealing with symbolic links
may be also used in our implementation: a maximal path length is set. So,
the administrators of the blackboard system may set a maximum allowed
length of the service call sequence, and if a composition exceeds this
length – while it is being formed – the request will fail and the

administrators will be informed in order to check the definition of the
services that have taken part in the composition.
A final implementation consideration is the provision of resilience against
software or hardware failures, especially in the presence of long-lasting
tasks. If the software implementing a module of the blackboard
architecture (especially the service execution module) or the computer
hosting it crashes, it would be desirable to be able to resume tasks from
the time point of the crash, rather than restarting requests (or housekeeping
activities, such as the cache cleanup) from the beginning. To this end, a
checkpointing mechanism should be used with the blackboard, to write to
persistent store the current status outstanding transactions. Checkpoints
may be taken periodically, or can be incrementally built by writing to
persistent store the operations that have been completed, similarly to
recovery logs in database systems (Date, 1994).

Conclusions

In this paper we have presented a blackboard-oriented architecture, which
enables service discovery, dynamic composition and execution. The
architecture incorporates high-level service semantics, through the use of
an ontology, and employs data dependencies both for automatically
deducing the services that need to be involved in a composite service and
for effectively scheduling their execution, exploiting the inherent
parallelism. Metadata within the ontology can be exploited for document
caching, in order to avoid redundant service execution. Finally, the
blackboard can simulate the invocation paradigm of web services and
RMI, enabling thus its usage through existing clients, without the need for
any modifications.
An important advantage of the proposed approach is that service interfaces
and implementations can change at any point in time, without the need for
modifying other services that are related to them, either as input providers
or as result consumers. The blackboard, acting as a mediator in such cases,
will arrange for combining the new service definitions with appropriate
input providers or result consumers by employing transformations,
intercalating other services or modifying the inputs that must be presented
to the execution process, in order to execute the composite service. No
predetermined execution paths need to be defined or changed, and
constituent services need not be aware of the source of their inputs or the
destination of their outputs.
In the presence of multiple providers for the same simple service, the
blackboard may attempt to optimise the execution plan according to a
number of criteria which may include expected response time, current

system load, cost of using the specific service provider and so forth. The
algorithms that may be employed for optimisation will be investigated in
the context of our future work. Optimisation may also extend to the user
interface level, taking into account user group diversities and specific
capabilities within each group. For instance, a social worker may work
better by identifying a beneficiary through the social security number,
whereas citizens may prefer to identify themselves through their name,
surname and year of birth. Such a provision will provide adaptability to
end-user needs, complementing the adaptability to regulatory frameworks
and implementation parameters. Finally, future work will address the issue
of blackboard replication as a means for providing resilience against
software and hardware failures and network partitioning, as well as for
enhancing performance. The issues associated with replication, such as
repository synchronisation, request execution handover and sibling cache
exploitation will be also studied.

References

European Commission, Public Sector Information: A Key Resource for
Europe - Green Paper on public sector information in the information
society COM(98) 585 January 1999, available from
ftp://ftp.cordis.lu/pub/econtent/docs/gp_en.pdf, (last visited November 21st
2007)
World Bank, A Definition of e-Government,
http://www1.worldbank.org/publicsector/egov/ (last visited November 21st
2007), 1999.
Rayport, F., Jaworski, B., Rayport, J., Introduction to e-Commerce.
McGraw-Hill/Irwin; 2nd edition, April 18, 2003.
European Commission, The Role of e-Government for Europe’s Future,
Brussels, 26.9.2003, COM(2003)567 final, available at
http://europa.eu.int/information_society/eeurope/2005/doc/all_about/egov
_communication_en.pdf (last visited November 21st 2007), 2003
Patel, N. (editor), Adaptive Evolutionary Information Systems, Idea Group
Publishing, 2003
Hirschfeld, R., Matthias, W., Gybels, K., “Assisting System Evolution: A
Smalltalk Retrospective”, Proceedings of the ECOOP 2002 First
International Workshop on Unanticipated Software Evolution (USE),
Malaga, Spain, June 10-14, 2002.
Lohmann, D., Gilani, W., Spinczyk, O., “On Adaptable Aspect-Oriented
Operating Systems”, Proceedings of the ECOOP Workshop on
Programming Languages and Operating Systems (ECOOP 2004), Oslo,
Norway, 2004

Theotokis, D., Kapos, G. D., Vassilakis, C., Sotiropoulou, A., Gyftodimos,
G., “Distributed information systems tailorability: A component
approach”, Proceedings of the IEEE Workshop on Future Trends on
Distributed Computing, Cape Town, pp. 95-101, 1999.
Stamoulis D et al, “Ateleological Development of ‘Design-Decisions-
Independent’ Information Systems”. N. Patel (ed) Adaptive Evolutionary
Information Systems, Idea Group Publishing, 1999.
Eardley A. et al, “Methods for Developing Flexible Strategic Information
Systems: Is the Answer Already Out There?” N. Patel (ed) Adaptive
Evolutionary Information Systems, Idea Group Publishing, 1999.
Dogac, A., Cingil, I., Laleci, G., Kabak, Y., “Improving the Functionality
of UDDI Registries through Web Service Semantics”, Proceedings of the
Third International Workshop on Technologies for E-Services, (LNCS
series Vol. 2444) pp. 9-18, 2004.
Nii H. P., “Blackboard Systems. The Blackboard Model for Problem
Solving and the Evolution of Blackboard Architectures”, AI Magazine
7(2). pp. 38-53, 1986
Corkill D. D., “Blackboard Systems”, AI Expert 6(9), pp. 40-47, 1991
Erman, L., London, P., Fickas, F., “The Design and an Example Use of
HEARSAY-III”, Proceedings of the 7th International Joint Conference on
Artificail Intelligence, pp. 409- 415, 1981.
Hayes-Roth, B. “A blackboard architecture for control”. Artificial
Intelligence, 26, 251-321, 1985.
Corkill D.D., Gallagher K.Q., Johnson P.M. “Achieving flexibility,
efficiency, and generality in blackboard architectures”, In Proceedings of
the National Conference on Artificial Intelligence, pages 18-23, Seattle,
Washington, July 1987.
Engelmore R.S., Morgan A., (eds). Blackboard Systems. Addison-Wesley,
1988.
Jagannathan V., Dodhiawala R., Baum L.S., (eds). Blackboard
Architectures and Applications, Academic Press, 1989.
Carver N.. “A Revisionist View of Blackboard Systems”. In Proceedings
of the 1997 Midwest Artificial Intelligence and Cognitive Science Society
Conference, May 1997.
Carver, N., Lesser, V. “Evolution of Blackboard Control Architectures”,
Expert System with Applications, Vol. 7, pp. 1-30, 1994.
Canadian Space Agency, “RADARSAT-1 Web page”,
http://www.space.gc.ca/asc/eng/satellites/radarsat1/default.asp, (last
visited 21st November 2007), 2005.
Daniel D. Corkill. “Countdown to Success: Dynamic objects, GBB, and
RADARSAT-1”, Communications of the ACM, 40(5):48-58, May 1997.
Tambouris E. “An Integrated platform for Realising Online One-Stop
Government: The eGov Projet”, Proceedings of the DEXA International

Workshop "On the Way to Electronic Government", IEEE Computer
Socity Press, Los Alamitos, CA, p. 359-363, 2001
Bunting D. et al, Web Services Composite Application Framework (WS-
CAF), Ver1.0, http://www.oasis-
open.org/committees/download.php/4343/WS-CAF%20Primer.pdf, (last
visited 21st November 2007) 2003
Casati, F., Ilnicki, S., Jin L.J., Krishnamoorthy V., Shan M.C. “Adaptive
and Dynamic Service Composition in eFlow”. Proceedings of Advanced
Information Systems Engineering: 12th International Conference, CAiSE
2000, Stockholm, Sweden, pp. 13-31, 2000
Lepouras G., Vassilakis C., Sotiropoulou A., Theotokis D., Katifori A.
“An Active Ontology-based Blackboard Architecture for Web Service
Interoperability” in Proceedings of the Second IEEE Conference on
Service Systems and Service Management, China, 2005.
Peristeras V., Tarabanis K., “Reengineering the public administration
modus operandi through the use of reference domain models and Semantic
Web Service technologies” in Proceedings of the 2006 AAAI Spring
Symposium on The Semantic Web meets eGovernment (SWEG), Stanford
University, California, USA, Mar. 27-29, 2006.
Loutas N., Peristeras N., Goudos S., Tarabanis K. “Facilitating the
Semantic Discovery of eGovernment Services: The SemanticGov Portal”
in Proceedings of the 3rd International Workshop on Vocabularies,
Ontologies and Rules for the Enterprise (VORTE 2007) in conjunction
with EDOC 2007, 2007.
KAON development team, KAON web site, http://kaon.semanticweb.org/
(last visited November 21st 2007), 2004
Halpin, T. Information Modeling and Relational Databases: From
Conceptual Analysis to Logical Design. Morgan Kaufmann, ISBN:
1558606726, 2001
Newcomer E. Understanding Web Services: XML, WSDL, SOAP, and
UDDI, Addison Wesley Professional, ISBN: 0201750813, 2002
Sun Microsystems, JavaTM Remote Method Invocation, available at
http://java.sun.com/j2se/1.3/docs/guide/rmi/index.html (last visited
November 21st 2007), 1999
Papamarkos, G., Poulovassilis, A., Wood, P. Event-Condition-Action Rule
Languages for the Semantic Web. In Proceedings of the Workshop on
Semantic Web and Databases, at VLDB 03, Berlin, September 2003.
Wessels D., Claffy K., Internet Cache Protocol (ICP), version 2 – RFC
2186, Available through ftp://ftp.ietf.org/rfc/rfc2187.txt (last visited
November 21st 2007), 1997.
Wang J., “A Survey of Web Caching Schemes for the Internet”, ACM
Computer Communication Review, (29) pp. 36-46, 1999

Zhu H., Yang T, “Class-based Cache Management for Dynamic Web
Content”, IEEE INFOCOM, 2001
Vassilakis C., Lepouras G. “Controlled Caching of Dynamic WWW
Pages”, Proceedings of the DEXA 2002 conference, pp. 9-18, 2002.
Wessels D. Squid Internet Object Cache, http://www.squid-cache.org,
(last visited November 21st 2007), 2004.
Date, C., J. An introduction to database systems (6th edition). Addison-
Wesley publishing Company Inc., 1994. ISBN: 0-201-82458-2.
Freeman, E., Hupfer, S., Arnold, K. Javaspaces ™ Principles, Patterns
and Practice. Pearson Education, 1999. ISBN: 0201309556
Butenhof, D. Programming with POSIX(R) Threads. Addison-Wesley
Professional, 1997. ISBN: 0201633922

